scholarly journals A Novel Cytology-Based, Two-Hybrid Screen for Bacteria Applied to Protein-Protein Interaction Studies of a Type IV Secretion System

2002 ◽  
Vol 184 (20) ◽  
pp. 5572-5582 ◽  
Author(s):  
Zhiyong Ding ◽  
Zhenming Zhao ◽  
Simon J. Jakubowski ◽  
Atmakuri Krishnamohan ◽  
William Margolin ◽  
...  

ABSTRACT DivIVA of Bacillus subtilis and FtsZ of Escherichia coli were used to target heterologous protein complexes to cell division sites of E. coli and Agrobacterium tumefaciens. DivIVA and FtsZ that were fused to the dimerizing leucine zipper (LZ) domain of the yeast transcription activator GCN4 directed the green fluorescent protein (GFP) that was fused to an LZ domain to E. coli division sites, resulting in fluorescence patterns identical to those observed with DivIVA::GFP and FtsZ::GFP. These cell division proteins also targeted the VirE1 chaperone and VirE2 secretion substrate complex to division sites of E. coli and A. tumefaciens. Coproduction of the native VirE1 or VirE2 proteins inhibited the dihybrid interaction in both species, as judged by loss of GFP targeting to division sites. The VirE1 chaperone bound independently to N- and C-terminal regions of VirE2, with a requirement for residues 84 to 147 and 331 to 405 for these interactions, as shown by dihybrid studies with VirE1::GFP and DivIVA fused to N- and C-terminal VirE2 fragments. DivIVA also targeted homo- and heterotypic complexes of VirB8 and VirB10, two bitopic inner membrane subunits of the A. tumefaciens T-DNA transfer system, in E. coli and homotypic complexes of VirB10 in A. tumefaciens. VirB10 self-association in bacteria was mediated by the C-terminal periplasmic domain, as shown by dihybrid studies with fusions to VirB10 truncation derivatives. Together, our findings establish a proof-of-concept for the use of cell-location-specific proteins for studies of interactions among cytosolic and membrane proteins in diverse bacterial species.

2021 ◽  
Author(s):  
Pavan Patel ◽  
Brendan J. O’Hara ◽  
Emily Aunins ◽  
Kimberly M. Davis

AbstractIt is now well appreciated that members of pathogenic bacterial populations exhibit heterogeneity in growth rates and metabolic activity, and it is known this can impact the ability to eliminate all members of the bacterial population during antibiotic treatment. It remains unclear which pathways promote slowed bacterial growth within host tissues, primarily because it has been difficult to identify and isolate slow growing bacteria from host tissues for downstream analyses. To overcome this limitation, we have developed a novel variant of TIMER, a slow-folding fluorescent protein, to identify subsets of slowly dividing bacteria within host tissues. The original TIMER folds too slowly for fluorescence accumulation in quickly replicating bacterial species (Escherichia coli, Yersinia pseudotuberculosis), however this TIMER42 variant accumulates signal in late stationary phase cultures of E. coli and Y. pseudotuberculosis. We show TIMER42 signal also accumulates during exposure to sources of nitric oxide (NO), suggesting TIMER42 signal detects growth-arrested bacterial cells. In a mouse model of Y. pseudotuberculosis deep tissue infection, TIMER42 signal is clearly detected, and primarily accumulates in bacteria expressing markers of stationary phase growth. There was not significant overlap between TIMER42 signal and NO-exposed subpopulations of bacteria within host tissues, suggesting NO stress was transient, allowing bacteria to recover from this stress and resume replication. This novel TIMER42 variant represents a new faster folding TIMER that will enable additional studies of slow-growing subpopulations of bacteria, specifically within bacterial species that quickly divide.Author SummaryWe have generated a variant of TIMER that can be used to mark slow-growing subsets of Yersinia pseudotuberculosis, which has a relatively short division time, similar to E. coli. We used a combination of site-directed and random mutagenesis to generate the TIMER42 variant, which has red fluorescent signal accumulation in post-exponential or stationary phase cells. We found that nitric oxide (NO) stress is sufficient to promote TIMER42 signal accumulation in culture, however within host tissues, TIMER42 signal correlates with a stationary phase reporter (dps). These results suggest NO may cause an immediate arrest in bacterial cell division, but during growth in host tissues exposure to NO is transient, allowing bacteria to recover from this stress and resume cell division. Thus instead of indicating a response to host stressors, TIMER42 signal accumulation within host tissues appears to identify slow-growing cells that are experiencing nutrient limitation.


2007 ◽  
Vol 189 (8) ◽  
pp. 3026-3035 ◽  
Author(s):  
Brian D. Corbin ◽  
Yipeng Wang ◽  
Tushar K. Beuria ◽  
William Margolin

ABSTRACT FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.


1998 ◽  
Vol 180 (5) ◽  
pp. 1296-1304 ◽  
Author(s):  
Xuan-chuan Yu ◽  
Anthony H. Tran ◽  
Qin Sun ◽  
William Margolin

ABSTRACT Escherichia coli cell division protein FtsK is a homolog of Bacillus subtilis SpoIIIE and appears to act late in the septation process. To determine whether FtsK localizes to the septum, we fused three N-terminal segments of FtsK to green fluorescent protein (GFP) and expressed them in E. colicells. All three segments were sufficient to target GFP to the septum, suggesting that as little as the first 15% of the protein is a septum-targeting domain. Localized fluorescence was detectable only in cells containing a visible midcell constriction, suggesting that FtsK targeting normally occurs only at a late stage of septation. The largest two FtsK-GFP fusions were able at least partially to complement the ftsK44 mutation in trans, suggesting that the N- and C-terminal domains are functionally separable. However, overproduction of FtsK-GFP resulted in a late-septation phenotype similar to that of ftsK44, with fluorescent dots localized at the blocked septa, suggesting that high levels of the N-terminal domain may still localize but also inhibit FtsK activity. Interestingly, under these conditions fluorescence was also sometimes localized as bands at potential division sites, suggesting that FtsK-GFP is capable of targeting very early. In addition, FtsK-GFP localized to potential division sites in cephalexin-induced andftsI mutant filaments, further supporting the idea that FtsK-GFP can target early, perhaps by recognizing FtsZ directly. This hypothesis was supported by the failure of FtsK-GFP to localize inftsZ mutant filaments. In ftsK44 mutant filaments, FtsA and FtsZ were usually localized to potential division sites between the blocked septa. When the ftsK44 mutation was incorporated into the FtsK-GFP fusions, localization to midcell ranged between very weak and undetectable, suggesting that the FtsK44 mutant protein is defective in targeting the septum.


2005 ◽  
Vol 187 (22) ◽  
pp. 7815-7825 ◽  
Author(s):  
Sze Yi Lau ◽  
Helen I. Zgurskaya

ABSTRACT The Escherichia coli chromosome contains several operons encoding confirmed and predicted multidrug transporters. Among these transporters only the inactivation of components of the AcrAB-TolC complex leads to substantial changes in susceptibility to multiple drugs. This observation prompted a conclusion that other transporters are silent or expressed at levels insufficient to contribute to multidrug resistance phenotype. We found that increased expression of AcrA, the periplasmic membrane fusion protein, is toxic only in cells lacking the multidrug efflux transporter AcrEF. AcrEF-deficient cells with increased expression of AcrA have a severe cell division defect that results in cell filamentation (>50 μm). Similar defects were obtained in cells lacking the outer membrane channel TolC, which acts with AcrEF, suggesting that cell filamentation is caused by the loss of AcrEF function. Green fluorescent protein-AcrA fusion studies showed that in normal and filamentous cells AcrA is associated with membranes in a confined manner and that this localization is not affected by the lack of AcrEF. Similarly, the structure and composition of membranes were normal in filamentous cells. Fluorescence microscopy showed that the filamentous AcrEF-deficient E. coli cells are defective in chromosome condensation and segregation. Our results suggest that the E. coli AcrEF transporter is expressed under standard laboratory conditions and plays an important role in the normal maintenance of cell division.


2008 ◽  
Vol 54 (11) ◽  
pp. 964-970 ◽  
Author(s):  
Denise K. Zinniel ◽  
Zhengyu Feng ◽  
Paul H. Blum ◽  
Raúl G. Barletta ◽  
Anne K. Vidaver

Microbacterium testaceum is a predominant endophytic bacterial species isolated from corn and sorghum in the midwestern United States. The development of genetic transfer systems for M. testaceum may enable its use for biocontrol and other applications. The type strain (IFO 12675) and field isolates (SE017, SE034, and CE648) were grown to mid-exponential phase, concentrated (1.0 × 1011CFU·mL–1), electroporated ( Escherichia coli  – Clavibacter shuttle plasmid pDM302), and plated on TSA with 10 µg·mL–1chloramphenicol. Transformation efficiencies averaged 140 CFU·µg–1of DNA. Restriction endonuclease analysis showed that pDM302 was not altered after extraction from transformants and re-introduction into E. coli. Transformants with pDM302 were also subjected to nonselective growth conditions, with the frequency of loss after one passage being 84% for IFO 12675 and 88% for SE034. We inserted the green fluorescent protein and the firefly luciferase (FFlux) reporter genes into pDM302, confirming the expression of FFlux in IFO 12675 and SE034. The SE034 FFlux strain was recovered from inoculated corn in greenhouse studies and found to fluoresce by luminometry. These results in M. testaceum demonstrate for the first time its transformability, pDM302 replication, FFlux gene expression, and the recovery of the FFlux recombinant strain from inoculated corn.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1325 ◽  
Author(s):  
Ke Yue ◽  
Tran Nam Trung ◽  
Yiyong Zhu ◽  
Ralf Kaldenhoff ◽  
Lei Kai

Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Shireen M. Kotay ◽  
Rodney M. Donlan ◽  
Christine Ganim ◽  
Katie Barry ◽  
Bryan E. Christensen ◽  
...  

ABSTRACT An alarming rise in hospital outbreaks implicating hand-washing sinks has led to widespread acknowledgment that sinks are a major reservoir of antibiotic-resistant pathogens in patient care areas. An earlier study using green fluorescent protein (GFP)-expressing Escherichia coli (GFP-E. coli) as a model organism demonstrated dispersal from drain biofilms in contaminated sinks. The present study further characterizes the dispersal of microorganisms from contaminated sinks. Replicate hand-washing sinks were inoculated with GFP-E. coli, and dispersion was measured using qualitative (settle plates) and quantitative (air sampling) methods. Dispersal caused by faucet water was captured with settle plates and air sampling methods when bacteria were present on the drain. In contrast, no dispersal was captured without or in between faucet events, amending an earlier theory that bacteria aerosolize from the P-trap and disperse. Numbers of dispersed GFP-E. coli cells diminished substantially within 30 minutes after faucet usage, suggesting that the organisms were associated with larger droplet-sized particles that are not suspended in the air for long periods. IMPORTANCE Among the possible environmental reservoirs in a patient care environment, sink drains are increasingly recognized as a potential reservoir to hospitalized patients of multidrug-resistant health care-associated pathogens. With increasing antimicrobial resistance limiting therapeutic options for patients, a better understanding of how pathogens disseminate from sink drains is urgently needed. Once this knowledge gap has decreased, interventions can be engineered to decrease or eliminate transmission from hospital sink drains to patients. The current study further defines the mechanisms of transmission for bacteria that colonize sink drains.


2003 ◽  
Vol 69 (8) ◽  
pp. 4915-4926 ◽  
Author(s):  
Michael B. Cooley ◽  
William G. Miller ◽  
Robert E. Mandrell

ABSTRACT Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 109 CFU g−1 on A. thaliana roots and to 2 × 107 CFU g−1 on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.


Sign in / Sign up

Export Citation Format

Share Document