scholarly journals Computational ligands to VKORC1s and CYPs. Could they predict new anticoagulant rodenticides?

2021 ◽  
Author(s):  
A Bermejo-Nogales ◽  
J.M. Navas ◽  
J Coll

AbstractAnticoagulant-resistance in rodents and anticoagulant off-target effects are some of the world-wide problems of increasing concern. To search for new anticoagulant rodenticide candidates we have computationally explored some of the rat genes previously implicated in resistance to actual anticoagulants. In particular, we searched among hundreds of anticoagulant-similar chemotypes those binding rat wild-type VKORC1 (the best-known anticoagulant target, a Vitamin K-recycling enzyme), VKORC1L1 (a VKORC1-related enzyme), Cytochrome P450 CYP enzymes (some of the most important enzymes implicated in detoxification) and anticoagulant-resistant VKORC1-mutants (to minimize propensity to resistance). Results predicted new VKORC1 leads with binding-scores in the low nM range (high binding-affinities) predicting hydroxycoumarin- and naphtoquinone-like chemotypes. We then selected top-leads with additional high binding-scores to more than three anticoagulant-related CYPs, suggesting minimal detoxification rates and therefore maximal anticoagulation expectatives. A downsized list of top top-leads maintaining VKORC1 low-binding scores to anticoagulant resistant mutants, was finally proposed for experimental validation. The combination of different rat targets for computational studies, could be used to search for unrelated chemotypes, for reduction of off-target environmental anticoagulant impacts, and/or as new tools to explore anticoagulant molecular mechanisms.

2014 ◽  
Vol 112 (09) ◽  
pp. 495-502 ◽  
Author(s):  
Amy Griffiths ◽  
Jennifer Wintermute ◽  
Philip Fay ◽  
Morgan Monaghan ◽  
Hironao Wakabayashi

SummaryFactor (F)VIIIa, a heterotrimer comprised of A1, A2, and A3C1C2 subunits, is labile due to the tendency of the A2 subunit to dissociate from the A1/A3C1C2 dimer. As dissociation of the A2 subunit inactivates FVIIIa activity, retention of A2 defines FVIIIa stability and thus, FXase activity. Earlier results showed that replacing residues D519, E665, and E1984 at the A2 domain interface with Ala or Val reduced rates of FVIIIa decay, increasing FXa and thrombin generation. We now show the enhanced FVIIIa stability of these variants results from increases in inter-A2 subunit affinity. Using a FVIIIa reconstitution assay to monitor inter-subunit affinity by activity regeneration, the apparent Kd value for the interaction of wild-type (WT) A2 subunit with WT A1/A3C1C2 dimer (43 ± 2 nM) was significantly higher than values observed for the A2 point mutants D519A/V, E665A/V, and E1984A/V which ranged from ~5 to ~19 nM. Val was determined to be the optimal hydrophobic residue at position 665 (apparent Kd = 5.1 ± 0.7 nM) as substitutions with Ile or Leu at this position increased the apparent Kd value by ~3- and ~7-fold, respectively. Furthermore, the double mutant (D519V/E665V) showed an ~47-fold lower apparent Kd value (0.9 ± 0.6 nM) than WT. Thus these hydrophobic mutations at the A2 subunit interfaces result in high binding affinities for the A2 subunit and correlate well with previously observed reductions in rates in FVIIIa decay.


2020 ◽  
Vol 79 (04) ◽  
Author(s):  
Bhupal Hatzade ◽  
Rohini Sreevathsa ◽  
Udaya Kumar ◽  
Uma Rao

Activation tagging is one of the most preferred strategies in functional genomics. The major advantage of the technique is the development of variability to a particular character(s) in a single genetic background based on the site of T-DNA integration. The understanding of resistance/ susceptibility mechanism portrayed by the mutants and identification of the genes responsible for the respective trait has always been a lucrative option for crop improvement. In rice, Meloidogyne graminicola has emerged as one of the major nematode pests and a main constraint for yield losses. The activation tagged rice mutants developed depicted a range of phenotypic variations with respect to panicles, height, flowering time, seed colour etc. Further, evaluation of the response of selected 16 activation tagged rice mutants to deliberate challenging with M. graminicola under pot culture studies showed a large variation in the ability of the nematode to infect these mutants. Among them, five mutants (lines 8, 9, 10, 11 and 15) portrayed a resistant response by producing least number of galls ranging from 1.5 to 2.6 galls per plant whereas wild type and other mutants were moderately susceptible (5 to 8.10 galls per plant) to M. graminicola. Corroborately, the multiplication factor of M. graminicola in resistant mutants was significantly less ranging from 0.64 to 1.71 as against 6.36 to 17.43 in wild type and other susceptible mutants due to reduction in total endoparasites and nematode fecundity. This variability towards the nematode challenge can be very useful in deciphering the molecular mechanisms of underlying responses, which can be exploited for breeding resistant rice varieties against this serious pest.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Li ◽  
Andrew Hung ◽  
Angela Wei Hong Yang

AbstractProstate cancer (PCa) is a cancer that occurs in the prostate with high morbidity and mortality. Danggui Beimu Kushen Wan (DBKW) is a classic formula for patients with difficult urination including PCa. This study aimed to investigate the molecular mechanisms of DBKW for PCa. We obtained DBKW compounds from our previous reviews. We identified potential targets for PCa from literature search, currently approved drugs and Open Targets database and filtered them by protein–protein interaction network analysis. We selected 26 targets to predict three cancer-related pathways. A total of 621 compounds were screened via molecular docking using PyRx and AutoDock Vina against 21 targets for PCa, producing 13041 docking results. The binding patterns and positions showed that a relatively small number of tight-binding compounds from DBKW were predicted to interact strongly and selectively with three targets. The top five high-binding-affinity compounds were selected to generate a network, indicating that compounds from all three herbs had high binding affinity against the 21 targets and may have potential biological activities with the targets. DBKW contains multi-targeting agents that could act on more than one pathway of PCa simultaneously. Further studies could focus on validating the computational results via experimental studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1257
Author(s):  
Fareena Shahid ◽  
Noreen ◽  
Roshan Ali ◽  
Syed Lal Badshah ◽  
Syed Babar Jamal ◽  
...  

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2901-2908 ◽  
Author(s):  
Youko Sakayori ◽  
Mizuho Muramatsu ◽  
Satoshi Hanada ◽  
Yoichi Kamagata ◽  
Shinichi Kawamoto ◽  
...  

The emergence and spread of mutants resistant to bacteriocins would threaten the safety of using bacteriocins as food preservatives. To determine the physiological characteristics of resistant mutants, mutants of Enterococcus faecium resistant to mundticin KS, a class IIa bacteriocin, were isolated. Two types of mutant were found that had different sensitivities to other antimicrobial agents such as nisin (class I) and kanamycin. Both mutants were resistant to mundticin KS even in the absence of Mg2+ ions. The composition of unsaturated fatty acids in the resistant mutants was significantly increased in the presence of mundticin KS. The composition of the phospholipids in the two resistant mutants also differed from those in the wild-type strain. The putative zwitterionic amino-containing phospholipid in both mutants significantly increased, whereas amounts of phosphatidylglycerol and cardiolipin decreased. These changes in membrane structure may influence resistance of enterococci to class IIa and class I bacteriocins.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1083-1093
Author(s):  
Jeong-Ah Seo ◽  
Yajun Guan ◽  
Jae-Hyuk Yu

Abstract Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.


Sign in / Sign up

Export Citation Format

Share Document