scholarly journals Undersampling correction methods to control γ-dependence for comparing β-diversity between regions

2021 ◽  
Author(s):  
Ke Cao ◽  
Jens-Christian Svenning ◽  
Chuan Yan ◽  
Jintun Zhang ◽  
Xiangcheng Mi ◽  
...  

AbstractMeasures of β-diversity are known to be highly constrained by the variation in γ-diversity across regions (i.e., γ-dependence), making it challenging to infer underlying ecological processes. Undersampling correction methods have attempted to estimate the actual β-diversity in order to minimize the effects of γ-dependence arising from the problem of incomplete sampling. However, no study has systematically tested their effectiveness in removing γ-dependence, and examined how well undersampling-corrected β-metrics reflect true β-diversity patterns that respond to ecological gradients. Here, we conduct these tests by comparing two undersampling correction methods with the widely used individual-based null model approach, using both empirical data and simulated communities along a known ecological gradient across a wide range of γ-diversity and sample sizes. We found that undersampling correction methods using diversity accumulation curves were generally more effective than the null model approach in removing γ-dependence. In particular, the undersampling-corrected β-Shannon diversity index was most independent on γ-diversity and was the most reflective of the true β-diversity pattern along the ecological gradient. Moreover, the null model-corrected Jaccard-Chao index removed γ-dependence more effectively than either approach alone. Our validation of undersampling correction methods as effective tools for accommodating γ-dependence greatly facilitates the comparison of β-diversity across regions.

2020 ◽  
Vol 648 ◽  
pp. 19-38
Author(s):  
AI Azovsky ◽  
YA Mazei ◽  
MA Saburova ◽  
PV Sapozhnikov

Diversity and composition of benthic diatom algae and ciliates were studied at several beaches along the White and Barents seas: from highly exposed, reflective beaches with coarse-grained sands to sheltered, dissipative silty-sandy flats. For diatoms, the epipelic to epipsammic species abundance ratio was significantly correlated with the beach index and mean particle size, while neither α-diversity measures nor mean cell length were related to beach properties. In contrast, most of the characteristics of ciliate assemblages (diversity, total abundance and biomass, mean individual weight and percentage of karyorelictids) demonstrated a strong correlation to beach properties, remaining low at exposed beaches but increasing sharply in more sheltered conditions. β-diversity did not correlate with beach properties for either diatoms or ciliates. We suggest that wave action and sediment properties are the main drivers controlling the diversity and composition of the intertidal microbenthos. Diatoms and ciliates, however, demonstrated divergent response to these factors. Epipelic and epipsammic diatoms exhibited 2 different strategies to adapt to their environments and therefore were complementarily distributed along the environmental gradient and compensated for each other in diversity. Most ciliates demonstrated a similar mode of habitat selection but differed in their degree of tolerance. Euryporal (including mesoporal) species were relatively tolerant to wave action and therefore occurred under a wide range of beach conditions, though their abundance and diversity were highest in fine, relatively stable sediments on sheltered beaches, whereas the specific interstitial (i.e. genuine microporal) species were mostly restricted to only these habitats.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Samuel Royer-Tardif ◽  
Jürgen Bauhus ◽  
Frédérik Doyon ◽  
Philippe Nolet ◽  
Nelson Thiffault ◽  
...  

Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.


2017 ◽  
Vol 63 (2) ◽  
pp. 8-16 ◽  
Author(s):  
Corrado Battisti ◽  
Marco Giardini ◽  
Francesca Marini ◽  
Lorena Di Rocco ◽  
Giuseppe Dodaro ◽  
...  

We reported a study on breeding birds occurring inside an 80 m-deep karst sinkhole, with the characterization of the assemblages recorded along its semi-vertical slopes from the upper edge until the bottom. The internal sides of the sinkhole have been vertically subdivided in four belts about 20 m high. The highest belt (at the upper edge of the cenote) showed the highest values in mean number of bird detections, mean and normalized species richness, and Shannon diversity index. The averaged values of number of detections and species richness significantly differ among belts. Species turnover (Cody’s β-diversity) was maximum between the highest belts. Whittaker plots showed a marked difference among assemblages shaping from broken-stick model to geometric series, and explicited a spatial progressive stress with a disruption in evenness towards the deepest belts. Bird assemblages evidenced a nested subset structure with deeper belts containing successive subsets of the species occurring in the upper belts. We hypothesize that, at least during the daytime in breeding season, the observed non-random distribution of species along the vertical stratification is likely due to (i) the progressive simplification both of the floristic composition and vegetation structure, and (ii) the paucity of sunlight as resources from the upper edge to the inner side of the cenote.


Paleobiology ◽  
2007 ◽  
Vol 33 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Karen M. Layou

Paleobiological diversity is often expressed as α (within-sample), β (among-sample), and γ (total) diversities. However, when studying the effects of extinction on diversity patterns, only variations in α and γ diversities are typically addressed. A null model that examines changes in β diversity as a function of percent extinction is presented here.The model examines diversity in the context of a hierarchical sampling strategy that allows for the additive partitioning of γ diversity into mean α and β diversities at varying scales. Here, the sampling hierarchy has four levels: samples, beds, facies, and region; thus, there are four levels of α diversity (α1, α2, α3, α4) and three levels of β diversity (β1, β2, and β3). Taxa are randomly assigned to samples within the hierarchy according to probability of occurrence, and initial mean α and β values are calculated. A regional extinction is imposed, and the hierarchy is resampled from the remaining extant taxa. Post-extinction mean α and β values are then calculated.Both non-selective and selective extinctions with respect to taxon abundance yield decreases in α, β, and γ diversities. Non-selective extinction with respect to taxon abundance shows little effect on diversity partitioning except at the highest extinction magnitudes (above 75% extinction), where the contribution of α1 to total γ increases at the expense of β3, with β1 and β2 varying little with increasing extinction magnitude. The pre-extinction contribution of α1 to total diversity increases with increased probabilities of taxon occurrence and the number of shared taxa between facies. Both β1 and β2 contribute equally to total diversity at low occurrence probabilities, but β2 is negligible at high probabilities, because individual samples preserve all the taxonomic variation present within a facies. Selective extinction with respect to rare taxa indicates a constant increase in α1 and constant decrease in β3 with increasing extinction magnitudes, whereas selective extinction with respect to abundant taxa yields the opposite pattern of an initial decrease in α1 and increase in β3. Both β1 and β2 remain constant with increasing extinction for both cases of selectivity. By comparing diversity partitioning before and after an extinction event, it may be possible to determine whether the extinction was selective with respect to taxon abundances, and if so, whether that selectivity was against rare or abundant taxa.Field data were collected across a Late Ordovician regional extinction in the Nashville Dome of Tennessee, with sampling hierarchy similar to that of the model. These data agree with the abundant-selective model, showing declines in α, β, and γ diversities, and a decrease in α1 and increase in β3, which suggests this extinction may have targeted abundant taxa.


2020 ◽  
Author(s):  
Joseph A. LaManna ◽  
Scott A. Mangan ◽  
Jonathan A. Myers

AbstractRecent studies showing bias in the measurement of density dependence have the potential to sow confusion in the field of ecology. We provide clarity by elucidating key conceptual and statistical errors with the null-model approach used in Detto et al. (2019). We show that neither their null model nor a more biologically-appropriate null model reproduces differences in density-dependent recruitment between forests, indicating that the latitudinal gradient in negative density dependence is not an artefact of statistical bias. Finally, we suggest a path forward that combines observational comparisons of density dependence in multiple fitness components across localities with mechanistic and geographically-replicated experiments.


Author(s):  
Kimberly A. With

Heterogeneity is a defining characteristic of landscapes and therefore central to the study of landscape ecology. Landscape ecology investigates what factors give rise to heterogeneity, how that heterogeneity is maintained or altered by natural and anthropogenic disturbances, and how heterogeneity ultimately influences ecological processes and flows across the landscape. Because heterogeneity is expressed across a wide range of spatial scales, the landscape perspective can be applied to address these sorts of questions at any level of ecological organization, and in aquatic and marine systems as well as terrestrial ones. Disturbances—both natural and anthropogenic—are a ubiquitous feature of any landscape, contributing to its structure and dynamics. Although the focus in landscape ecology is typically on spatial heterogeneity, disturbance dynamics produce changes in landscape structure over time as well as in space. Heterogeneity and disturbance dynamics are thus inextricably linked and are therefore covered together in this chapter.


2020 ◽  
Vol 17 (169) ◽  
pp. 20200447
Author(s):  
Kimberlyn Roosa ◽  
Amna Tariq ◽  
Ping Yan ◽  
James M. Hyman ◽  
Gerardo Chowell

The 2018–2020 Ebola outbreak in the Democratic Republic of the Congo is the first to occur in an armed conflict zone. The resulting impact on population movement, treatment centres and surveillance has created an unprecedented challenge for real-time epidemic forecasting. Most standard mathematical models cannot capture the observed incidence trajectory when it deviates from a traditional epidemic logistic curve. We fit seven dynamic models of increasing complexity to the incidence data published in the World Health Organization Situation Reports, after adjusting for reporting delays. These models include a simple logistic model, a Richards model, an endemic Richards model, a double logistic growth model, a multi-model approach and two sub-epidemic models. We analyse model fit to the data and compare real-time forecasts throughout the ongoing epidemic across 29 weeks from 11 March to 23 September 2019. We observe that the modest extensions presented allow for capturing a wide range of epidemic behaviour. The multi-model approach yields the most reliable forecasts on average for this application, and the presented extensions improve model flexibility and forecasting accuracy, even in the context of limited epidemiological data.


1970 ◽  
Vol 36 (2) ◽  
pp. 121-125 ◽  
Author(s):  
MAA Mondal ◽  
MM Hossain ◽  
MG Rasul ◽  
M Shalim Uddin

Genetic diversity in 31 potato genotypes (parents and their hybrid progenies) was determined using multivariate analysis. Cluster analysis revealed that the parents and their hybrid progenies could be grouped into five different clusters. The maximum number of genotypes were included in clusters II and V. Cluster V had maximum and cluster I had minimum intra-cluster distance. Cluster mean showed wide range of variation for several characters among single as well as multi-genotypic clusters. Considering diversity pattern, parents should be selected from clusters I, III and V for the improvement of potato.   Key words: Genetic diversity, Cluster analysis, Potato DOI = 10.3329/bjb.v36i2.1499 Bangladesh J. Bot. 36(2): 121-125, 2007 (December)


2010 ◽  
Vol 38 (4) ◽  
pp. 742-755 ◽  
Author(s):  
Michal Hájek ◽  
Michal Horsák ◽  
Lubomír Tichý ◽  
Petra Hájková ◽  
Daniel Dítě ◽  
...  

Ecology ◽  
2019 ◽  
Author(s):  
Meredith Root-Bernstein

Rewilding is an increasingly recognized approach to conservation and restoration, among academics, land managers, and the public. Although a number of different definitions have been proposed for rewilding (see Definitions of Rewilding), most approaches called “rewilding” include ideas about restoring a habitat to a less-anthropogenic state, restoring ecological processes and allowing them to take their own course without managing for a target ecosystem condition and (re)-introducing missing (usually large) species as a way to restore those ecological processes. Conceptualizations of rewilding and actual rewilding projects draw on a wide range of cultural and ecological ideas and practical knowledge, which are detailed in this article. Several organizations now represent rewilding interests to policymakers and the public and set up or facilitate rewilding initiatives in Europe and the Americas. Much of their philosophies, practice, data, and outcomes are not published. The Wildland Research Institute is an influential source of research on wilderness mapping, rewilding, restoration, and policy analysis in Europe. The European Centre for Nature Conservation (ECNC) supports and facilitates the conservation of large herbivore populations and their habitats at large scales in Eurasia through its Large Herbivore Network. Rewilding Europe implements rewilding projects throughout Europe, bringing together financing for large herbivore reintroductions and luxury wilderness tourism. Their European Rewilding Network brings together rewilding-related services and knowledge exchange. Similarly, the True Nature Foundation is a European foundation that works to restore habitats, reintroduce primarily large herbivores, and create sustainable tourism in nature areas. Wild Europe seeks to promote and lobby for the protection of large, “wild” natural areas. Similarly, the European Wilderness Society is an advocacy organization that identifies and promotes the stewardship and protection of large wilderness areas. The Rewilding Foundation is an international organization promoting and working toward the conservation of large areas of habitat and corridors for large carnivores. The Wildlands Network is an American organization that similarly seeks to conserve and connect large habitat areas and reintroduce apex predators. The Rewilding Institute in the United States also promotes protecting large habitats and creating corridors for large carnivores. There are also numerous site-based rewilding projects, which largely preceded the consolidation of rewilding as a concept. Many of these, through their creative rethinking of ecological and paleo-ecological orthodoxy, have influenced the development of rewilding practice and theory.


Sign in / Sign up

Export Citation Format

Share Document