scholarly journals NR2F1 is a barrier to dissemination of early-evolved mammary cancer cells

2021 ◽  
Author(s):  
Carolina Rodriguez-Tirado ◽  
Nupura Kale ◽  
Maria Jose Carlini ◽  
Nitisha Shrivastava ◽  
Bassem Khalil ◽  
...  

SummaryCancer cells disseminate during very early and sometimes asymptomatic stages of tumor progression. Granted that biological barriers to tumorigenesis exist, there must also be limiting steps to early dissemination, all of which remain largely unknown. We report that the orphan nuclear receptor NR2F1/COUP-TF1 serves as a barrier to early dissemination. High-resolution intravital imaging revealed that loss of function of NR2F1 in HER2+ early cancer cells increased in vivo dissemination without accelerating mammary tumor formation. NR2F1 expression was positively regulated by the tumor suppressive MMK3/6-p38-MAPK pathway and downregulated by HER2 and Wnt4 oncogenic signaling. NR2F1 downregulation by HER2 in early cancer cells led to decreased E-cadherin expression and β-catenin membrane localization, disorganized laminin 5 deposition, and increased expression of CK14, TWIST1, ZEB1 and PRRX1. Our findings reveal the existence of an inhibitory mechanism of dissemination regulated by NR2F1 downstream of HER2 signaling.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Laura Graciotti ◽  
Toru Hosoda ◽  
Fumihiro Sanada ◽  
Giulia Borghetti ◽  
Christian Arranto ◽  
...  

The low incidence of cardiac tumors has been attributed to tissue pressure dictated by myocardial mechanics and large coronary blood flow. These variables, however, have failed to consider the possibility that the rare occurrence of heart neoplasms may be dictated by the molecular characteristics of cardiomyocytes. We have shown that miR-1, miR-133a, and miR-499 translocate from myocytes to co-cultured MCF7 breast cancer cells, inhibiting their growth. The transfer of miRs is mediated by gap junction channels and is abolished by Cx43 and Cx45 silencing. Although these in vitro results provided important information on the inhibitory function of miRs in cell proliferation, co-culture of myocytes and cancer cells does not mimic the in vivo organization of the myocardium that allows the formation of multiple sites of coupling between myocytes and tumor cells. To reproduce, at least in part, the in vivo condition, we developed first a physiological model of organ culture. Thick vibratome-cut myocardial slices were placed on a multiwell plate containing an oxygen-saturated sponge. At 24-48 hours, the cultured tissue was viable and myocytes showed a well organized sarcomere structure. Two hours after plating of the organ slices, control MCF7 cells or MCF7 cells in which Cx43 and Cx45 were silenced (MCF7-shCx43-shCx45) were seeded on the myocardium. Control MCF7 cells showed a slower growth rate than MCF7-shCx43-shCx45 cells, a finding consistent with miR translocation and its blockade, respectively. Second, 1 x 106 MCF7 or MCF7 cells overexpressing miR-1, miR-133a, and miR-499 (MCF7-miRs) were injected subcutaneously in NOD-SCID mice; ~45 days later, the tumors developed from MCF7 cells were more than 10-fold larger and 3-fold heavier than those originated from MCF7-miRs cells. Third, these studies were complemented with the intramyocardial injection of 1 x 105 control MCF7 cells. Five weeks later, no neoplastic lesions were identified. However, when an excessive number of MCF7 cells were injected, 1 x 106, tumor formation was apparent. In conclusion, our results indicate that transfer of miR-1, miR-133a, and miR-499 from cardiomyocytes to cancer cells plays a critical role in preventing the generation of tumors in the myocardium.


Data in Brief ◽  
2016 ◽  
Vol 6 ◽  
pp. 542-549 ◽  
Author(s):  
Elly De Vlieghere ◽  
Charlotte Carlier ◽  
Wim Ceelen ◽  
Marc Bracke ◽  
Olivier De Wever

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1325 ◽  
Author(s):  
Patrice M. Witschen ◽  
Thomas S. Chaffee ◽  
Nicholas J. Brady ◽  
Danielle N. Huggins ◽  
Todd P. Knutson ◽  
...  

Cancer has been conceptualized as a chronic wound with a predominance of tumor promoting inflammation. Given the accumulating evidence that the microenvironment supports tumor growth, we investigated hyaluronan (HA)-CD44 interactions within breast cancer cells, to determine whether this axis directly impacts the formation of an inflammatory microenvironment. Our results demonstrate that breast cancer cells synthesize and fragment HA and express CD44 on the cell surface. Using RNA sequencing approaches, we found that loss of CD44 in breast cancer cells altered the expression of cytokine-related genes. Specifically, we found that production of the chemokine CCL2 by breast cancer cells was significantly decreased after depletion of either CD44 or HA. In vivo, we found that CD44 deletion in breast cancer cells resulted in a delay in tumor formation and localized progression. This finding was accompanied by a decrease in infiltrating CD206+ macrophages, which are typically associated with tumor promoting functions. Importantly, our laboratory results were supported by human breast cancer patient data, where increased HAS2 expression was significantly associated with a tumor promoting inflammatory gene signature. Because high levels of HA deposition within many tumor types yields a poorer prognosis, our results emphasize that HA-CD44 interactions potentially have broad implications across multiple cancers.


2006 ◽  
Vol 85 (3) ◽  
pp. 220-225 ◽  
Author(s):  
P.-N. Chen ◽  
Y.-S. Hsieh ◽  
C.-L. Chiang ◽  
H.-L. Chiou ◽  
S.-F. Yang ◽  
...  

Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity. Here, we provide molecular evidence associated with the anti-metastatic effect of silibinin by showing a marked inhibition of the invasion and motility of SCC-4 tongue cancer cells, with 89% and 66.4% of inhibition, respectively, by 100 μM of silibinin. This effect was associated with a reduced expression of MMP-2 and u-PA, together with an enhanced expression of TIMP-2 and PAI-1. Silibinin also exerted an inhibitory effect on the phosphorylation of ERK1/2. Additionally, pre-treatment of SCC-4 cancer cells with 10 and 20 μM of U0126, a specific MEK inhibitor, resulted in a reduced expression of MMP-2 (18.7 and 51.4%) and u-PA (19.2 and 48.9%) concomitantly with a marked inhibition of cell invasion (13.7 and 45.7%). Finally, silibinin was evidenced by its inhibition of the metastasis of Lewis lung carcinoma (LLC) cells in vivo. These results suggested that silibinin can reduce the invasion and metastasis of tumor cells, and such a characteristic may be of great value in the development of a potential cancer therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Zhang ◽  
Pinping Jiang ◽  
Shoyu Wang ◽  
Wenjun Cheng ◽  
Shilong Fu

Aims: A growing number of studies have unveiled that long non-coding RNA (lncRNA) is conductive to cervical cancer (CC) development. However, the effect of LIPE-AS1 is remained to be studied in CC.Main Methods: Reverse transcription-polymerase chain reaction (RT-PCR) was employed to measure LIPE-AS1 expression in CC tissues and the adjacent normal tissues. Additionally, we conducted gain- and loss-of functional experiments of LIPE-AS1 and adopted CCK8 assay, BrdU assay, and in vivo tumor formation experiment to test the proliferation of CC cells (HCC94 and HeLa). Besides, the apoptosis, invasion, and epithelial-mesenchymal transformation (EMT) of CC cells were estimated using flow cytometry, transwell assay, and western blot, respectively. Further, LIPE-AS1 downstream targets were analyzed through bioinformatics, and the binding relationships between LIPE-AS1 and miR-195-5p were verified via dual-luciferase activity experiment and RNA Protein Immunoprecipitation (RIP) assay. Moreover, rescue experiments were conducted to confirm the effects of LIPE-AS1 and miR-195-5p in regulating CC development and the expressions of MAPK signaling pathway related proteins were detected by RT-PCR, western blot, and immunofluorescence.Key Findings: LIPE-AS1 was over-expressed in CC tissues (compared to normal adjacent tissues) and was notably related to tumor volume, distant metastasis. Overexpressing LIPE-AS1 accelerated CC cell proliferation, migration and EMT, inhibited apoptosis; while LIPE-AS1 knockdown had the opposite effects. The mechanism studies confirmed that LIPE-AS1 sponges miR-195-5p as a competitive endogenous RNA (ceRNA), which targets the 3′-untranslated region (3′-UTR) of MAP3K8. LIPE-AS1 promoted the expression of MAP3K8 and enhanced ERK1/2 phosphorylation, which were reversed by miR-195-5p.Significance: LIPE-AS1 regulates CC progression through the miR-195-5p/MAPK signaling pathway, providing new hope for CC diagnosis and treatment.


Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2018 ◽  
Author(s):  
Mika Pietilä ◽  
Pranshu Sahgal ◽  
Emilia Peuhu ◽  
Niklas Jäntti ◽  
Ilkka Paatero ◽  
...  

AbstractHuman epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. Endosomal trafficking of many other receptor tyrosine kinases regulates their oncogenic signaling, but the prevailing view is that HER2 is retained on the cell surface. Here we reveal that in cancer cells Sortilin related receptor 1 (SORLA; SORL1) forms a complex with HER2 and regulates its subcellular distribution by promoting recycling of endosomal HER2 back to plasma membrane. Expression of SORLA in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA targets HER2 to late endosomal/lysosomal compartments, impairs HER2-driven signaling and in vivo tumor growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.


2019 ◽  
Vol 51 (12) ◽  
pp. 1276-1285
Author(s):  
Xiaolan Ouyang ◽  
Xiaoming Hao ◽  
Shuaibin Liu ◽  
Jianguo Hu ◽  
Lina Hu

Abstract Cervical cancer is a prevalent and devastating malignancy in females worldwide. Nucleoporin 93 (Nup93), a member of the nuclear pore complex, plays an important role in transport across the nuclear pore. Several nucleoporins have been linked to cancer. However, the oncogenic role and underlying mechanism of Nup93 in cervical cancer development have not been reported. In this study, the expression of Nup93 was analyzed by quantitative real-time polymerase chain reaction (qPCR), western blot analysis, and immunohistochemical staining in cervical cancer tissues and cell lines. We found that the expression of Nup93 was higher in cervical cancer samples, compared to normal cervical samples. The knockdown of Nup93 inhibited cell proliferation, migration, and invasion capacity of cervical cancer cells. At the same time, we also found that silencing of Nup93 could inhibit cellular migration and invasion by regulating cytoskeleton actin and Rho family proteins. Nup93 also participated in the IL-6/STAT3 signaling pathway. In addition, down-regulation of Nup93 prevented tumor formation in mice in vivo. Thus, Nup93 may be a carcinogenic gene and serve as a potential therapeutic target for cervical cancer.


2020 ◽  
Vol 41 (11) ◽  
pp. 1485-1497 ◽  
Author(s):  
Alfredo García-Venzor ◽  
Edna Ayerim Mandujano-Tinoco ◽  
Araceli Ruiz-Silvestre ◽  
José Manuel Sánchez ◽  
Floria Lizarraga ◽  
...  

Abstract Multicellular tumor spheroids (MCTSs) constitute a three-dimensional culture system that recapitulates the in vivo tumor microenvironment. Tumor cells cultured as MCTSs present antineoplastic resistance due to the effect of microenvironmental signals acting upon them. In this work, we evaluated the biological function of a new microenvironment-regulated long non-coding RNA, lncMat2B, in breast cancer. In MCTSs, the expression of lncMat2B presented an increase and a zonal heterogeneity, as it was expressed principally in quiescent cells of hypoxic regions of the MCTSs. As expected, functional assays supported the role of severe hypoxia in the regulation of lncMat2B. Moreover, gain- and loss-of-function assays using a transcriptional silencing CRISPR/Cas9 system and gBlock revealed that lncMAT2B regulates the tumor-initiating phenotype. Interestingly, lncMat2B is overexpressed in a cisplatin-resistant MCF-7 cell line, and its ectopic expression in wild type MCF-7 cells increased survival to cisplatin exposure by reducing DNA damage and reactive oxygen species accumulation. lncMAT2B is a possible link between severe hypoxia, tumor-initiating phenotype and drug resistance in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document