scholarly journals The Integrity of the Speciation Core Complex is necessary for centromeric binding and reproductive isolation in Drosophila

2021 ◽  
Author(s):  
Andrea Lukacs ◽  
Andreas W Thomae ◽  
Peter Krueger ◽  
Tamas Schauer ◽  
Anuroop V Venkatasubramani ◽  
...  

ABSTRACTPostzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. This overexpression leads to mitotic defects, a misregulation in the expression of transposable elements and a decreased fertility. In this work, we describe a distinct six subunit Speciation Core Complex (SCC) containing HMR and LHR and analyse the effect of Hmr mutations on complex function and integrity. Our experiments suggest that HMR acts as a bridging factor between centromeric chromatin and pericentromeric heterochromatin, which is required for both its physiological function and its ability to cause hybrid male lethality.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009744
Author(s):  
Andrea Lukacs ◽  
Andreas W. Thomae ◽  
Peter Krueger ◽  
Tamas Schauer ◽  
Anuroop V. Venkatasubramani ◽  
...  

Postzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. The overexpression of the two proteins also leads to mitotic defects, a misregulation in the expression of transposable elements and decreased fertility in pure species. In this work, we describe a distinct six subunit protein complex containing HMR and LHR and analyse the effect of Hmr mutations on complex integrity and function. Our experiments suggest that HMR needs to bring together components of centromeric and pericentromeric chromatin to fulfil its physiological function and to cause hybrid male lethality.


2019 ◽  
Vol 36 (8) ◽  
pp. 1783-1792 ◽  
Author(s):  
Jacob Carter Cooper ◽  
Andrea Lukacs ◽  
Shelley Reich ◽  
Tamas Schauer ◽  
Axel Imhof ◽  
...  

Abstract Understanding the molecular basis of hybrid incompatibilities is a fundamental pursuit in evolutionary genetics. In crosses between Drosophila melanogaster females and Drosophila simulans males, an interaction between at least three genes is necessary for hybrid male lethality: Hmr mel, Lhr sim, and gfzf sim. Although HMR and LHR physically bind each other and function together in a single complex, the connection between gfzf and either of these proteins remains mysterious. Here, we show that GFZF localizes to many regions of the genome in both D. melanogaster and D. simulans, including at telomeric retrotransposon repeats. We find that GFZF localization at telomeres is significantly different between these two species, reflecting the rapid evolution of telomeric retrotransposon copy number composition between the two species. Next, we show that GFZF and HMR normally do not colocalize in D. melanogaster. In interspecies hybrids, however, HMR shows extensive mis-localization to GFZF sites, thus uncovering a new molecular interaction between these hybrid incompatibility factors. We find that spreading of HMR to GFZF sites requires gfzf sim but not Lhr sim, suggesting distinct roles for these factors in the hybrid incompatibility. Finally, we find that overexpression of HMR and LHR within species is sufficient to mis-localize HMR to GFZF binding sites, indicating that HMR has a natural low affinity for GFZF sites. Together, these studies provide the first insights into the different properties of gfzf between D. melanogaster and D. simulans, and uncover a molecular interaction between gfzf and Hmr in the form of altered protein localization.


Author(s):  
Sridhar Muthusami ◽  
Ilangovan Ramachandran ◽  
Sneha Krishnamoorthy ◽  
Yuvaraj Sambandam ◽  
Satish Ramalingam ◽  
...  

: The development of colorectal cancer (CRC) is a multi-stage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and several interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


Author(s):  
Cesar A. López ◽  
Animesh Agarwal ◽  
Que N. Van ◽  
Andrew G. Stephen ◽  
S. Gnanakaran

AbstractSmall GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms. Graphic Abstract


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi216
Author(s):  
Melanie Schoof ◽  
Carolin Göbel ◽  
Dörthe Holdhof ◽  
Sina Al-Kershi ◽  
Ulrich Schüller

Abstract DNA methylation based classification of brain tumors has revealed a high heterogeneity between tumors and led to the description of multiple distinct subclasses. The increasing subdivision of tumors can help to understand molecular mechanisms of tumor development and to improve therapy if appropriate model systems for preclinical research are available. Multiple recent publications have described a subgroup of pediatric glioblastoma which is clearly separable from other pediatric and adult glioblastoma in its DNA methylation profile (GBM MYCN). Many cases in this group are driven by MYCN amplifications and harbor TP53 mutations. These tumors almost exclusively occur in children and were further described as highly aggressive with a median overall survival of only 14 months. In order to further investigate the biology and treatment options of these tumors, we generated hGFAP-cre::TP53 Fl/Fl ::lsl-MYCN mice. These mice carry a loss of TP53 and show aberrant MYCN expression in neural precursors of the central nervous system. The animals develop large forebrain tumors within the first 80 days of life with 100 % penetrance. These tumors resemble human GBM MYCN tumors histologically and are sensitive to AURKA and ATR inhibitors in vitro. We believe that further characterization of the model and in vivo treatment studies will pave the way to improve treatment of patients with these highly aggressive tumors.


2017 ◽  
Vol 89 ◽  
pp. 160
Author(s):  
D.J. Doorduijn ◽  
R.D. Gorham ◽  
L. van Bloois ◽  
E. Mastrobattista ◽  
S.H.M. Rooijakkers

2000 ◽  
Vol 151 (4) ◽  
pp. 763-778 ◽  
Author(s):  
Mark R. Frey ◽  
Jennifer A. Clark ◽  
Olga Leontieva ◽  
Joshua M. Uronis ◽  
Adrian R. Black ◽  
...  

Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium.


Author(s):  
Lulu Ji ◽  
Lin Wang

Human placenta is vital for fetal development, and act as an interface between the fetus and the expecting mother. Abnormal placentati on underpins various pregnancy complications such as miscarriage, pre-eclampsia and intrauterine growth restriction. Despite the important role of placenta, the molecular mechanisms governing placental formation and trophoblast cell lineage specification is poorly understand. It is mostly due to the lack of appropriate model system. The great various in placental types across mammals make it limit for the use of laboratory animals in studying human placental development. However, over the past few years, alternative methods have been employed, including human embryonic stem cells, induced pluripotent stem cells, human trophoblast stem cell, and 3-dimensional organoids. Herein, we summarize the present knowledge about human development, differentiated cell types in the trophoblast epithelium and current human placental trophoblast model systems.


2019 ◽  
Vol 20 (13) ◽  
pp. 3117 ◽  
Author(s):  
Ewa Muszyńska ◽  
Mateusz Labudda

Heavy metals are an interesting group of trace elements (TEs). Some of them are minutely required for normal plant growth and development, while others have unknown biological actions. They may cause injury when they are applied in an elevated concentration, regardless of the importance for the plant functioning. On the other hand, their application may help to alleviate various abiotic stresses. In this review, both the deleterious and beneficial effects of metallic trace elements from their uptake by roots and leaves, through toxicity, up to the regulation of physiological and molecular mechanisms that are associated with plant protection against stress conditions have been briefly discussed. We have highlighted the involvement of metallic ions in mitigating oxidative stress by the activation of various antioxidant enzymes and emphasized the phenomenon of low-dose stimulation that is caused by non-essential, potentially poisonous elements called hormesis, which is recently one of the most studied issues. Finally, we have described the evolutionary consequences of long-term exposure to metallic elements, resulting in the development of unique assemblages of vegetation, classified as metallophytes, which constitute excellent model systems for research on metal accumulation and tolerance. Taken together, the paper can provide a novel insight into the toxicity concept, since both dose- and genotype-dependent response to the presence of metallic trace elements has been comprehensively explained.


Sign in / Sign up

Export Citation Format

Share Document