scholarly journals 5-Azacytidine: Effects on the Expression of alpha-Cardiac Actin in Pericytes from Human Adipose Tissue

2021 ◽  
Author(s):  
Valéria Ferreira-Silva ◽  
Munira M. A. Baqui ◽  
Greice A. Molfetta ◽  
Aparecida M. Fontes ◽  
Dalila I. Zanette ◽  
...  

AbstractDNA methylation patterns are closely related to the chromatin structure, and its remodeling is considered an important mechanism in the control of gene transcription during cell differentiation. In rodent, several studies have related the possibility that multipotent mesenchymal stromal cells (MSCs) undergo cardiomyogenesis. However, it has not been completely elucidated if human adult stem cell exhibits true differentiation potential for a cardiac lineage. In this study, the action of the DNA methylation inhibitor 5-azacytidine (5-aza) was examined in human adipose tissue pericytes (hATPCs: 3G5+) regarding their possible capacity to induce myocytes in vitro. Real-Time PCR revealed that cells treated with 5-aza presented time-dependent decrease in the mRNA expression of α-cardiac actin (α-CA). At 24 h, this diminution was statistically significant; however, there was not a correlation with the highest level of DNA demethylation at the same period using Methylation-Sensitive High Resolution Melting-PCR (MS-HRM-PCR). An evident increase in the α-CA protein expression was observed by Western blotting in hATPCs treated with 5-aza at 24 h. The mRNA expression of α-SMA (α-smooth actin) also showed a time-dependent decrease after the treatment, however, it was not significant. The ultrastructural analysis showed similar structures such as like-cell junctions, caveolae, and actin myofilaments, which aligned in parallel. These phenotypic alterations were found only after the treatment; however, the hTAPCs after 5-aza treatment were not able to form thick myofilaments and consequently sarcomeres. These results indicated that a terminal cardiac differentiation of hTAPCs was not achieved and that the cardiomyogenesis failure could be related to the non-muscle origin of the adipose tissue.

2014 ◽  
Vol 10 (01) ◽  
pp. 64 ◽  
Author(s):  
Tina Rönn ◽  
Charlotte Ling ◽  
◽  

It is well established that exercise promotes health, and reduces people’s risks for developing type 2 diabetes and becoming obese. But just how exercise performs this, at a cellular level, and what molecular and physiologic steps are involved and in what order, are still not fully understood. Metabolic disorders are often influenced by interactions between genetic and environmental factors. One possible explanation for how the environment may influence the genome is through epigenetic mechanisms–that is–chemical modifications to the DNA itself. Epigenetic factors include, for example, DNA methylation, histone modifications, and different RNA-mediated processes, which all have the ability to bind to DNA or affect the chromatin structure and thereby change how specific genes are interpreted and expressed. In this short review, we focus on describing how exercise influences the genome-wide DNA methylation pattern, including candidate genes for obesity and type 2 diabetes, in human adipose tissue.


1997 ◽  
Vol 134 (1-2) ◽  
pp. 118
Author(s):  
T. Radeau ◽  
M. Robb ◽  
P. Lau ◽  
J. Borthwick ◽  
R. McPherson

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157776 ◽  
Author(s):  
Petr Volkov ◽  
Anders H. Olsson ◽  
Linn Gillberg ◽  
Sine W. Jørgensen ◽  
Charlotte Brøns ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Milana Kokosar ◽  
Anna Benrick ◽  
Alexander Perfilyev ◽  
Romina Fornes ◽  
Emma Nilsson ◽  
...  

Abstract Genetic and epigenetic factors may predispose women to polycystic ovary syndrome (PCOS), a common heritable disorder of unclear etiology. Here we investigated differences in genome-wide gene expression and DNA methylation in adipose tissue from 64 women with PCOS and 30 controls. In total, 1720 unique genes were differentially expressed (Q < 0.05). Six out of twenty selected genes with largest expression difference (CYP1B1, GPT), genes linked to PCOS (RAB5B) or type 2 diabetes (PPARG, SVEP1), and methylation (DMAP1) were replicated in a separate case-control study. In total, 63,213 sites (P < 0.05) and 440 sites (Q < 0.15) were differently methylated. Thirty differentially expressed genes had corresponding changes in 33 different DNA methylation sites. Moreover, a total number of 1913 pairs of differentially expressed “gene-CpG” probes were significantly correlated after correction for multiple testing and corresponded with 349 unique genes. In conclusion, we identified a large number of genes and pathways that are affected in adipose tissue from women with PCOS. We also identified specific DNA methylation pathways that may affect mRNA expression. Together, these novel findings show that women with PCOS have multiple transcriptional and epigenetic changes in adipose tissue that are relevant for development of the disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Irioda ◽  
Rafael Cassilha ◽  
Larissa Zocche ◽  
Julio Cesar Francisco ◽  
Ricardo Correa Cunha ◽  
...  

Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation.Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively.Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreasedα4-integrin expression (CD49d), cell viability, and number of colony forming units.Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.


2000 ◽  
pp. 195-199 ◽  
Author(s):  
R Peino ◽  
V Pineiro ◽  
O Gualillo ◽  
C Menendez ◽  
J Brenlla ◽  
...  

OBJECTIVE: Leptin secretion is reduced by low temperatures in experimental animals, and this effect has been explained as an adaptive mechanism to cold environments. This study investigated the in vitro effects of cold exposure on human white adipose tissue. DESIGN: To understand whether the low temperature action is a direct or a mediated effect, leptin secretion was assessed in vitro in human omental adipose tissue incubated at varied temperatures, from 38 donors. As an internal control, the effect of reduced temperatures on in vitro GH secretion by GH3 cells was assessed. METHODS: Measurement of hormones secretion was carried out with an RIA, while human ob gene mRNA expression was assessed with reverse transcription PCR. RESULTS: Compared with the standard temperature of 37 degrees C, leptin secretion by human adipose tissue was significantly (P<0.05) reduced when the incubations were carried out at 34.5 degrees C (41% inhibition), and 32 degrees C (68% inhibition), with no parallel changes in the ob mRNA expression. At these reduced temperatures, glucocorticoid-mediated leptin secretion was well preserved. When the effect of reduced temperatures was assessed on in vitro GH secretion, a superimposable reduction was observed. CONCLUSIONS: These results indicate: (i) that low temperatures reduce leptin secretion by acting directly on the adipose tissue and (ii) that the similar reduction in a hormone unrelated to energy metabolism, such as GH, suggests that the observed reduction is a mechanical perturbation of leptin secretion, which may be devoid of physiological implications.


Sign in / Sign up

Export Citation Format

Share Document