scholarly journals Cold exposure inhibits leptin secretion in vitro by a direct and non-specific action on adipose tissue

2000 ◽  
pp. 195-199 ◽  
Author(s):  
R Peino ◽  
V Pineiro ◽  
O Gualillo ◽  
C Menendez ◽  
J Brenlla ◽  
...  

OBJECTIVE: Leptin secretion is reduced by low temperatures in experimental animals, and this effect has been explained as an adaptive mechanism to cold environments. This study investigated the in vitro effects of cold exposure on human white adipose tissue. DESIGN: To understand whether the low temperature action is a direct or a mediated effect, leptin secretion was assessed in vitro in human omental adipose tissue incubated at varied temperatures, from 38 donors. As an internal control, the effect of reduced temperatures on in vitro GH secretion by GH3 cells was assessed. METHODS: Measurement of hormones secretion was carried out with an RIA, while human ob gene mRNA expression was assessed with reverse transcription PCR. RESULTS: Compared with the standard temperature of 37 degrees C, leptin secretion by human adipose tissue was significantly (P<0.05) reduced when the incubations were carried out at 34.5 degrees C (41% inhibition), and 32 degrees C (68% inhibition), with no parallel changes in the ob mRNA expression. At these reduced temperatures, glucocorticoid-mediated leptin secretion was well preserved. When the effect of reduced temperatures was assessed on in vitro GH secretion, a superimposable reduction was observed. CONCLUSIONS: These results indicate: (i) that low temperatures reduce leptin secretion by acting directly on the adipose tissue and (ii) that the similar reduction in a hormone unrelated to energy metabolism, such as GH, suggests that the observed reduction is a mechanical perturbation of leptin secretion, which may be devoid of physiological implications.

1969 ◽  
Vol 61 (1_Suppl) ◽  
pp. S156
Author(s):  
Suad Efendić ◽  
Peter Amer ◽  
Jan Östman

2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 334
Author(s):  
Aisha Y. Madani ◽  
Yasser Majeed ◽  
Houari B. Abdesselem ◽  
Maha V. Agha ◽  
Muneera Vakayil ◽  
...  

Obesity promotes premature aging and dysfunction of white adipose tissue (WAT) through the accumulation of cellular senescence. The senescent cells burden in WAT has been linked to inflammation, insulin-resistance (IR), and type 2 diabetes (T2D). There is limited knowledge about molecular mechanisms that sustain inflammation in obese states. Here, we describe a robust and physiologically relevant in vitro system to trigger senescence in mouse 3T3-L1 preadipocytes. By employing transcriptomics analyses, we discovered up-regulation of key pro-inflammatory molecules and activation of interferon/signal transducer and activator of transcription (STAT)1/3 signaling in senescent preadipocytes, and expression of downstream targets was induced in epididymal WAT of obese mice, and obese human adipose tissue. To test the relevance of STAT1/3 signaling to preadipocyte senescence, we used Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology to delete STAT1/3 and discovered that STAT1 promoted growth arrest and cooperated with cyclic Guanosine Monophosphate-Adenosine Monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) to drive the expression of interferon β (IFNβ), C-X-C motif chemokine ligand 10 (CXCL10), and interferon signaling-related genes. In contrast, we discovered that STAT3 was a negative regulator of STAT1/cGAS-STING signaling—it suppressed senescence and inflammation. These data provide insights into how STAT1/STAT3 signaling coordinates senescence and inflammation through functional interactions with the cGAS/STING pathway.


2004 ◽  
Vol 33 (1) ◽  
pp. 11-19 ◽  
Author(s):  
RY Li ◽  
HD Song ◽  
WJ Shi ◽  
SM Hu ◽  
YS Yang ◽  
...  

In addition to serving as a fat depot, adipose tissue is also considered as an important endocrine organ that synthesizes and secretes a number of factors. Leptin is an adipocyte-derived hormone that plays a vital role in energy balance. Expression of leptin is regulated by dietary status and hormones. In the present study, we report that galanin, an orexigenic peptide, inhibits leptin expression and secretion in rat adipose tissue and in 3T3-L1 adipocytes. Treatment with galanin (25 micro g/animal) induced approximately 46% down-regulation of leptin secretion at 15 min, followed by 40, 37 and 47% decreases in leptin secretion at 1, 2 and 4 h respectively. Although Northern blot analysis of adipose tissue from the same animals showed that leptin mRNA expression in adipose tissue was unaffected by galanin treatment for 2 h, galanin treatment for 4 h led to decline of leptin mRNA expression in a dose-dependent manner. Meanwhile, treating the rats with galanin had no effect on leptin mRNA expression in the hypothalamus. The inhibitory action of the galanin on leptin mRNA and protein levels was also observed in vitro. When incubated with 10 nM galanin for 48 h, leptin mRNA expression and protein secretion also decreased in 3T3-L1 adipocytes. On the other hand, galanin was found not only to express in rat adipose tissue, but also to increase about 8-fold after fasting. Based on these data, we speculate that increased galanin expression in rat adipose tissue after fasting may be involved in reducing leptin expression and secretion in fasting rats.


Gut ◽  
2008 ◽  
Vol 58 (4) ◽  
pp. 570-581 ◽  
Author(s):  
H Aurich ◽  
M Sgodda ◽  
P Kaltwasser ◽  
M Vetter ◽  
A Weise ◽  
...  

2004 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
U. Edvardsson ◽  
J. Oscarsson ◽  
B. Odén ◽  
A. Elander ◽  
B. Dahllöf ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1378
Author(s):  
Peyton Gibler ◽  
Jeffrey Gimble ◽  
Katie Hamel ◽  
Emma Rogers ◽  
Michael Henderson ◽  
...  

Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


Sign in / Sign up

Export Citation Format

Share Document