scholarly journals Validating a high-throughput tracking system: ATLAS as a regional-scale alternative to GPS

Author(s):  
Christine E. Beardsworth ◽  
Evy Gobbens ◽  
Frank van Maarseveen ◽  
Bas Denissen ◽  
Anne Dekinga ◽  
...  

AbstractFine-scale tracking of animal movement is important to understand the proximate mechanisms of animal behaviour. While GPS tracking is an excellent tool for measuring animal movement, trade-offs between tag weight, cost and lifespan limit its application to relatively large species, a small number of individuals or short tracking durations, respectively. The reverse-GPS system – ATLAS – uses lighter, cheaper tags compared to GPS tags, that can also last long periods of time at high sampling frequencies. Six systems are now operational worldwide and have successfully tracked over 50 species in various landscape types. This growing use of ATLAS to track animal movement motivates further refinement of best-practice application and an assessment of its accuracy.Here, we test the accuracy and precision of the largest ATLAS system, located in the Dutch Wadden Sea using concurrent GPS measurements as a reference. This large-scale ATLAS system consists of 26 receivers and covers 1326 km2 of intertidal region, with almost no physical obstacles for radio signals, providing a useful baseline for other systems. To measure accuracy, we calculated the distance between ATLAS and GPS location estimates for a route (mobile test) and 16 fixed locations (stationary test) on the Griend mudflat.ATLAS-derived location estimates differed on average 4.2 m from GPS-estimated stationary test sites and 5.7 m from GPS tracks taken whilst moving between them. Signals that were collected by more receiver stations were more accurate, although even 3-receiver localisations were comparable with GPS localisations (∼10 m difference). Higher receiver stations detected the tag at longer distances.Future ATLAS users should consider the height of receivers, their spatial arrangement, density and the movement mode of the study species (e.g., ground-dwelling or flying). In conclusion, ATLAS provides an accurate, regional-scale alternative to global GPS-based tracking with which hundreds of relatively small-bodied species can be tracked simultaneously for long periods of time. Our study shows that ATLAS is a valid alternative, providing comparable location estimates to GPS.

2020 ◽  
Author(s):  
Sebastian Fiedler ◽  
José A.F. Monteiro ◽  
Kristin B. Hulvey ◽  
Rachel J. Standish ◽  
Michael P. Perring ◽  
...  

ABSTRACTEcological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Successful realisation of such a strategy requires a fundamental mechanistic understanding of the link between ecosystem plant composition, plant traits and related ecosystem functions and services, as well as how climate change affects these relationships. An integrated approach of empirical research and simulation modelling with focus on plant traits can allow this understanding.Based on empirical data from a large-scale restoration project in a Mediterranean-type climate in Western Australia, we developed and validated the spatially explicit simulation model ModEST, which calculates coupled dynamics of nutrients, water and individual plants characterised by traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions (covering three ecosystem services), as well as trade-offs and synergies among the functions under current and future climatic conditions.Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity. In addition, we found that trade-offs and synergies among functions shifted with climate change.Synthesis and application. Our results imply that restoration ecologists will face a clear challenge to achieve their targets with respect to multifunctionality not only under current conditions, but also in the long-term. However, once ModEST is parameterized and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.


2020 ◽  
Author(s):  
Thomas Ulrich ◽  
Alice-Agnes Gabriel ◽  
Elizabeth Madden

Megathrust faults host the largest earthquakes on Earth which can trigger cascading hazards such as devastating tsunamis.Determining characteristics that control subduction zone earthquake and tsunami dynamics is critical to mitigate megathrust hazards, but is impeded by structural complexity, large spatio-temporal scales, and scarce or asymmetric instrumental coverage.Here we show that tsunamigenesis and earthquake dynamics are controlled by along-arc variability in regional tectonic stresses together with depth-dependent variations in rigidity and yield strength of near-fault sediments. We aim to identify dominant regional factors controlling megathrust hazards. To this end, we demonstrate how to unify and verify the required initial conditions for geometrically complex, multi-physics earthquake-tsunami modeling from interdisciplinary geophysical observations. We present large-scale computational models of the 2004 Sumatra-Andaman earthquake and Indian Ocean tsunami that reconcile near- and far-field seismic, geodetic, geological, and tsunami observations and reveal tsunamigenic trade-offs between slip to the trench, splay faulting, and bulk yielding of the accretionary wedge.Our computational capabilities render possible the incorporation of present and emerging high-resolution observations into dynamic-rupture-tsunami models. Our findings highlight the importance of regional-scale structural heterogeneity to decipher megathrust hazards.


2020 ◽  
Author(s):  
Maxime Garnault ◽  
Clémentine Duplaix ◽  
Pierre Leroux ◽  
Gilles Couleaud ◽  
Olivier David ◽  
...  

SummaryResearch rationale: In modern cropping systems, the near-universal use of plant protection products selects for resistance in pest populations. The emergence and evolution of this adaptive trait threaten treatment efficacy. We identified determinants of fungicide resistance evolution and quantified their effects at a large spatiotemporal scale.Methods: We focused on Zymoseptoria tritici, which causes leaf blotch in wheat. Phenotypes of qualitative or quantitative resistance to various fungicides were monitored annually, from 2004 to 2017, at about 70 sites throughout 22 regions of France (territorial units of 25 000km2 on average). We modelled changes in resistance frequency with regional anti-Septoria fungicide use, yield losses due to the disease and the regional area under organic wheat.Key results: The major driver of resistance dynamics was fungicide use at the regional scale. We estimated its effect on the increase in resistance and relative apparent fitness of each resistance phenotype. The predictions of the model replicated the spatiotemporal patterns of resistance observed in field populations (R2 from 0.56 to 0.82).Main conclusion: The evolution of fungicide resistance is mainly determined at the regional scale. This study therefore showed that collective management at the regional scale could effectively complete local actions.


2021 ◽  
Author(s):  
Benjamin Gochanour ◽  
Javier Fernández-López ◽  
Andrea Contina

AbstractAgent-based modeling (ABM) shows promise for animal movement studies. However, a robust, open-source, and spatially explicit ABM coding platform is currently lacking.We present abmR, an R package for conducting continental-scale ABM simulations across animal taxa. The package features two movement functions, each of which relies on the Ornstein-Uhlenbeck (OU) model.The theoretical background for abmR is discussed and the main functionalities are illustrated using two example populations.Potential future additions to this open-source package may include the ability to specify multiple environmental variables or to model interactions between agents. Additionally, updates may offer opportunities for disease ecology and integration with other R movement modeling packages.


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


Author(s):  
Carlos Lago-Peñas ◽  
Anton Kalén ◽  
Miguel Lorenzo-Martinez ◽  
Roberto López-Del Campo ◽  
Ricardo Resta ◽  
...  

This study aimed to evaluate the effects playing position, match location (home or away), quality of opposition (strong or weak), effective playing time (total time minus stoppages), and score-line on physical match performance in professional soccer players using a large-scale analysis. A total of 10,739 individual match observations of outfield players competing in the Spanish La Liga during the 2018–2019 season were recorded using a computerized tracking system (TRACAB, Chyronhego, New York, USA). The players were classified into five positions (central defenders, players = 94; external defenders, players = 82; central midfielders, players = 101; external midfielders, players = 72; and forwards, players = 67) and the following match running performance categories were considered: total distance covered, low-speed running (LSR) distance (0–14 km · h−1), medium-speed running (MSR) distance (14–21 km · h−1), high-speed running (HSR) distance (>21 km · h−1), very HSR (VHSR) distance (21–24 km · h−1), sprint distance (>24 km · h−1) Overall, match running performance was highly dependent on situational variables, especially the score-line condition (winning, drawing, losing). Moreover, the score-line affected players running performance differently depending on their playing position. Losing status increased the total distance and the distance covered at MSR, HSR, VHSR and Sprint by defenders, while attacking players showed the opposite trend. These findings may help coaches and managers to better understand the effects of situational variables on physical performance in La Liga and could be used to develop a model for predicting the physical activity profile in competition.


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Helen M. K. O'Neill ◽  
Sarah M. Durant ◽  
Stefanie Strebel ◽  
Rosie Woodroffe

Abstract Wildlife fences are often considered an important tool in conservation. Fences are used in attempts to prevent human–wildlife conflict and reduce poaching, despite known negative impacts on landscape connectivity and animal movement patterns. Such impacts are likely to be particularly important for wide-ranging species, such as the African wild dog Lycaon pictus, which requires large areas of continuous habitat to fulfil its resource requirements. Laikipia County in northern Kenya is an important area for wild dogs but new wildlife fences are increasingly being built in this ecosystem. Using a long-term dataset from the area's free-ranging wild dog population, we evaluated the effect of wildlife fence structure on the ability of wild dogs to cross them. The extent to which fences impeded wild dog movement differed between fence designs, although individuals crossed fences of all types. Purpose-built fence gaps increased passage through relatively impermeable fences. Nevertheless, low fence permeability can lead to packs, or parts of packs, becoming trapped on the wrong side of a fence, with consequences for population dynamics. Careful evaluation should be given to the necessity of erecting fences; ecological impact assessments should incorporate evaluation of impacts on animal movement patterns and should be undertaken for all large-scale fencing interventions. Where fencing is unavoidable, projects should use the most permeable fencing structures possible, both in the design of the fence and including as many purpose-built gaps as possible, to minimize impacts on wide-ranging wildlife.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jay A. VonBank ◽  
Mitch D. Weegman ◽  
Paul T. Link ◽  
Stephanie A. Cunningham ◽  
Kevin J. Kraai ◽  
...  

Abstract Background Animal movement patterns are the result of both environmental and physiological effects, and the rates of movement and energy expenditure of given movement strategies are influenced by the physical environment an animal inhabits. Greater white-fronted geese in North America winter in ecologically distinct regions and have undergone a large-scale shift in wintering distribution over the past 20 years. White-fronts continue to winter in historical wintering areas in addition to contemporary areas, but the rates of movement among regions, and energetic consequences of those decisions, are unknown. Additionally, linkages between wintering and breeding regions are generally unknown, and may influence within-winter movement rates. Methods We used Global Positioning System and acceleration data from 97 white-fronts during two winters to elucidate movement characteristics, model regional transition probabilities using a multistate model in a Bayesian framework, estimate regional energy expenditure, and determine behavior time-allocation influences on energy expenditure using overall dynamic body acceleration and linear mixed-effects models. We assess the linkages between wintering and breeding regions by evaluating the winter distributions for each breeding region. Results White-fronts exhibited greater daily movement early in the winter period, and decreased movements as winter progressed. Transition probabilities were greatest towards contemporary winter regions and away from historical wintering regions. Energy expenditure was up to 55% greater, and white-fronts spent more time feeding and flying, in contemporary wintering regions compared to historical regions. White-fronts subsequently summered across their entire previously known breeding distribution, indicating substantial mixing of individuals of varying breeding provenance during winter. Conclusions White-fronts revealed extreme plasticity in their wintering strategy, including high immigration probability to contemporary wintering regions, high emigration from historical wintering regions, and high regional fidelity to western regions, but frequent movements among eastern regions. Given that movements of white-fronts trended toward contemporary wintering regions, we anticipate that a wintering distribution shift eastward will continue. Unexpectedly, greater energy expenditure in contemporary wintering regions revealed variable energetic consequences of choice in wintering region and shifting distribution. Because geese spent more time feeding in contemporary regions than historical regions, increased energy expenditure is likely balanced by increased energy acquisition in contemporary wintering areas.


Sign in / Sign up

Export Citation Format

Share Document