scholarly journals Differential bioactivity of four BMP-family members as function of biomaterial stiffness

2021 ◽  
Author(s):  
Adrià Sales ◽  
Valia Khodr ◽  
Paul Machillot ◽  
Laure Fourel ◽  
Amaris Guevara-Garcia ◽  
...  

ABSTRACTWhereas soft biomaterial is not able to induce cell spreading, BMP-2 presented by a soft film has been described to be sufficient to trigger cell spreading, migration and downstream BMP-2 signaling. Based on thin polyelectrolyte films of controlled stiffness, we investigated whether the presentation of four BMP members (2, 4, 7, 9) in a matrix-bound manner may differentially impact cell adhesion and bone differentiation of skeletal progenitors. We performed high content and automated screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. The basolateral presentation of the different BMPs allowed us to discriminate the specificity of cellular response and the role of BMP receptors type I, type II, as well as three β integrins, in a BMP type and stiffness-dependent manner.

2018 ◽  
Vol 26 (6) ◽  
pp. 724-733 ◽  
Author(s):  
Lynne M. Robertson ◽  
Nicole M. Fletcher ◽  
Michael P. Diamond ◽  
Ghassan M. Saed

Aims:Hypoxia and the resulting oxidative stress play a major role in postoperative tissue fibrosis. The objective of this study was to determine the effect of l-alanyl-l-glutamine (Ala-Gln) on key markers of postoperative tissue fibrosis: hypoxia-inducible factor (HIF) 1α and type I collagen.Methods:Primary cultures of human normal peritoneal fibroblasts (NPF) established from normal peritoneal tissue were treated with increasing doses of Ala-Gln (0, 1, 2, or 10 mM) with hypoxia ([2% O2] 0-48 hours; continuous hypoxia) or after hypoxia (0.5, 1, 2, 4 hours) and restoration of normoxia (episodic hypoxia) with immediate treatment with Ala-Gln. Hypoxia-inducible factor 1α and type 1 collagen levels were determined by enzyme-linked immunosorbent assay. Data were analyzed with 1-way analysis of variance followed by Tukey tests with Bonferroni correction.Results:Hypoxia-inducible factor 1α and type I collagen levels increased in untreated controls by 3- to 4-fold in response to continuous and episodic hypoxia in human NPF. Under continuous hypoxia, HIF-1α and type I collagen levels were suppressed by Ala-Gln in a dose-dependent manner. l-alanyl-l-glutamine treatment after episodic hypoxia also suppressed HIF-1α and type I collagen levels for up to 24 hours for all doses and up to 48 hours at the highest dose, regardless of exposure time to hypoxia.Conclusions:l-alanyl-l-glutamine significantly suppressed hypoxia-induced levels of key tissue fibrosis (adhesion) phenotype markers under conditions of continuous as well as episodic hypoxia in vitro. This effect of glutamine on molecular events involved in the cellular response to insult or injury suggests potential therapeutic value for glutamine in the prevention of postoperative tissue fibrosis.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A767-A768
Author(s):  
Chiaki Kashino ◽  
Toru Hasegawa ◽  
Yasuhiro Nakano ◽  
Nahoko Iwata ◽  
Koichiro Yamamoto ◽  
...  

Abstract Glucocorticoid receptor (GR) are known to be expressed in the ovary and glucocorticoids are shown to exert direct effects on granulosa cell functions. In the clinical setting, menstrual abnormality, amenorrhea and hypermenorrhea can be shown in patients with glucocorticoid excess. On the other hand, glucocorticoids can also be used for the treatment of PCOS with hyperandrogenism. However, the effects of glucocorticoids on the reproductive system have not been fully elucidated. In the present study, we investigated the influence of glucocorticoids on follicular steroidogenesis using primary culture of rat granulosa cells, by focusing on the ovarian bone morphogenetic proteins (BMPs) acting as a luteinizing inhibitor. Granulosa cells isolated from female immature rats were treated with follicle-stimulating hormone (FSH) in the presence of dexamethasone (Dex) in serum-free conditions. After treatment with Dex for 48 h, the changes of estradiol (E2) and progesterone (P4) production and cAMP synthesis induced by FSH treatments were measured by ELISA. Total RNAs of granulosa cells treated with FSH, Dex and BMPs were extracted and mRNA levels of steroidogenetic factors and enzymes, BMP receptors and Id-1 were quantified by real-time RT-PCR. Phosphorylation of Smad1/5/9 induced by BMPs was evaluated by Western blotting using cell lysates in the presence or absence of Dex. As a result, it was revealed that Dex treatment decreased FSH-induced E2 production by granulosa cells. In accordance with the steroid results, Dex suppressed FSH-induced P450arom mRNA expression as well as FSH-induced cAMP synthesis by granulosa cells. By contrast, Dex treatment augmented FSH-induced P4 production by granulosa cells in a concentration-dependent manner. Dex treatment was found to enhance basal and FSH-induced mRNA levels of P4-synthetic enzymes including P450scc and 3βHSD. Of note, Dex treatment activated the BMP target gene Id-1 transcription and Smad1/5/9 phosphorylation, in particular, induced by BMP-15 among various BMP ligands including BMP-2, -4, -6, -7, -9 and -15. It was also revealed that Dex treatment increased mRNA levels of ALK-6, a type-I receptor for BMP-15, and that BMP-15 treatment in turn upregulated GR mRNA levels expressed by granulosa cells. Given that BMP-15 acts as an inhibitor for P4 production by suppressing FSH-receptor actions, it was suggested that glucocorticoid is functionally linked to the enhancement of endogenous BMP-15, leading to the negative feedback toward the P4 overproduction induced by FSH and Dex in granulosa cells. Collectively, it was revealed that glucocorticoids elicit differential effects on the ovarian steroidogenesis of E2 and P4, in which GR and BMP-15 actions are mutually enhanced in granulosa cells.


2021 ◽  
Author(s):  
Bonan Liu ◽  
Indu R Chandrashekaran ◽  
Olga Ilyichova ◽  
Damien Valour ◽  
Fabien Melchiore ◽  
...  

Glucocorticoids are steroid hormones that are essential for life in mammals. Therapeutically, they are some of the most cost-effective drugs for the treatment of inflammatory diseases ranging from skin rashes to COVID-19, but their use is limited by adverse effects. Glucocorticoids exert their effects via the glucocorticoid receptor, a type I nuclear hormone receptor which modulates gene expression. The transcriptional activity of some related, but nuclear restricted, type II nuclear hormone receptors can be enhanced by a family of intracellular transport proteins, the fatty acid binding proteins (FABPs). We find that the transcriptional activity of the GR can be altered by a sub-set of FABP family members dependent on the GR-ligand. The ability of some FABPs to selectively promote or limit the transcriptional activity of the GR in a ligand-dependent manner could facilitate the discovery of drugs that narrow GR activity to only the desired subset of therapeutically relevant genes.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Oladunni Olanubi ◽  
Jasmine Rae Frost ◽  
Sandi Radko ◽  
Peter Pelka

ABSTRACT Suppression of interferon signaling is of paramount importance to a virus. Interferon signaling significantly reduces or halts the ability of a virus to replicate; therefore, viruses have evolved sophisticated mechanisms that suppress activation of the interferon pathway or responsiveness of the infected cell to interferon. Adenovirus has multiple modes of inhibiting the cellular response to interferon. Here, we report that E1A, previously shown to regulate interferon signaling in multiple ways, inhibits interferon-stimulated gene expression by modulating RuvBL1 function. RuvBL1 was previously shown to affect type I interferon signaling. E1A binds to RuvBL1 and is recruited to RuvBL1-regulated promoters in an interferon-dependent manner, preventing their activation. Depletion of RuvBL1 impairs adenovirus growth but does not appear to significantly affect viral protein expression. Although RuvBL1 has been shown to play a role in cell growth, its depletion had no effect on the ability of the virus to replicate its genome or to drive cells into S phase. E1A was found to bind to RuvBL1 via the C terminus of E1A, and this interaction was important for suppression of interferon-stimulated gene transcriptional activation and recruitment of E1A to interferon-regulated promoters. Here, we report the identification of RuvBL1 as a new target for adenovirus in its quest to suppress the interferon response. IMPORTANCE For most viruses, suppression of the interferon signaling pathway is crucial to ensure a successful replicative cycle. Human adenovirus has evolved several different mechanisms that prevent activation of interferon or the ability of the cell to respond to interferon. The viral immediate-early gene E1A was previously shown to affect interferon signaling in several different ways. Here, we report a novel mechanism reliant on RuvBL1 that E1A uses to prevent activation of interferon-stimulated gene expression following infection or interferon treatment. This adds to the growing knowledge of how viruses are able to inhibit interferon and identifies a novel target used by adenovirus for modulation of the cellular interferon pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rowan P. Rimington ◽  
Jacob W. Fleming ◽  
Andrew J. Capel ◽  
Patrick C. Wheeler ◽  
Mark P. Lewis

AbstractInvestigations of the human neuromuscular junction (NMJ) have predominately utilised experimental animals, model organisms, or monolayer cell cultures that fail to represent the physiological complexity of the synapse. Consequently, there remains a paucity of data regarding the development of the human NMJ and a lack of systems that enable investigation of the motor unit. This work addresses this need, providing the methodologies to bioengineer 3D models of the human motor unit. Spheroid culture of iPSC derived motor neuron progenitors augmented the transcription of OLIG2, ISLET1 and SMI32 motor neuron mRNAs ~ 400, ~ 150 and ~ 200-fold respectively compared to monolayer equivalents. Axon projections of adhered spheroids exceeded 1000 μm in monolayer, with transcription of SMI32 and VACHT mRNAs further enhanced by addition to 3D extracellular matrices in a type I collagen concentration dependent manner. Bioengineered skeletal muscles produced functional tetanic and twitch profiles, demonstrated increased acetylcholine receptor (AChR) clustering and transcription of MUSK and LRP4 mRNAs, indicating enhanced organisation of the post-synaptic membrane. The number of motor neuron spheroids, or motor pool, required to functionally innervate 3D muscle tissues was then determined, generating functional human NMJs that evidence pre- and post-synaptic membrane and motor nerve axon co-localisation. Spontaneous firing was significantly elevated in 3D motor units, confirmed to be driven by the motor nerve via antagonistic inhibition of the AChR. Functional analysis outlined decreased time to peak twitch and half relaxation times, indicating enhanced physiology of excitation contraction coupling in innervated motor units. Our findings provide the methods to maximise the maturity of both iPSC motor neurons and primary human skeletal muscle, utilising cell type specific extracellular matrices and developmental timelines to bioengineer the human motor unit for the study of neuromuscular junction physiology.


2021 ◽  
Vol 22 (9) ◽  
pp. 4553
Author(s):  
Satoshi Fujisawa ◽  
Motoshi Komatsubara ◽  
Naoko Tsukamoto-Yamauchi ◽  
Nahoko Iwata ◽  
Takahiro Nada ◽  
...  

Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic–pituitary–adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jila Nasirzade ◽  
Zahra Kargarpour ◽  
Goran Mitulović ◽  
Franz Josef Strauss ◽  
Layla Panahipour ◽  
...  

AbstractParticulate autologous tooth roots are increasingly used for alveolar bone augmentation; however, the proteomic profile of acid dentin lysate and the respective cellular response have not been investigated. Here we show that TGF-β1 is among the 226 proteins of acid dentin lysate (ADL) prepared from porcine teeth. RNA sequencing identified 231 strongly regulated genes when gingival fibroblasts were exposed to ADL. Out of these genes, about one third required activation of the TGF-β receptor type I kinase including interleukin 11 (IL11) and NADPH oxidase 4 (NOX4). Reverse transcription-quantitative polymerase chain reaction and immunoassay confirmed the TGF-β-dependent expression of IL11 and NOX4. The activation of canonical TGF-β signaling by ADL was further confirmed by the phosphorylation of Smad3 and translocation of Smad2/3, using Western blot and immunofluorescence staining, respectively. Finally, we showed that TGF-β activity released from dentin by acid lysis adsorbs to titanium and collagen membranes. These findings suggest that dentin particles are a rich source of TGF-β causing a major response of gingival fibroblasts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher Agnew ◽  
Pelin Ayaz ◽  
Risa Kashima ◽  
Hanna S. Loving ◽  
Prajakta Ghatpande ◽  
...  

AbstractUpon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


2021 ◽  
Vol 22 (1) ◽  
pp. 394
Author(s):  
Simone Krueger ◽  
Alexander Riess ◽  
Anika Jonitz-Heincke ◽  
Alina Weizel ◽  
Anika Seyfarth ◽  
...  

In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.


Sign in / Sign up

Export Citation Format

Share Document