scholarly journals PAMP-triggered Genetic Reprogramming Involves Widespread Alternative Transcription Initiation and an Immediate Transcription Factor Wave

2021 ◽  
Author(s):  
Axel Thieffry ◽  
Jette Bornholdt ◽  
Andrea Barghetti ◽  
Albin Sandelin ◽  
Peter Brodersen

ABSTRACTImmune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers of the genetic reprogramming required to reach the immune state remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression (CAGE). Our results show that as much as 15% of all PAMP response genes display alternative transcription initiation. In several cases, use of alternative TSSs may be regulatory as it determines inclusion of target peptides or protein domains, or occurrence of upstream open reading frames (uORFs) in mRNA leader sequences. We also find that 60% of PAMP-response genes respond much earlier than previously thought. In particular, a previously unnoticed cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, some examples of known potentiators of PTI, in one case under direct MAP kinase control, support the notion that the rapidly induced transcription factors could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.

2014 ◽  
Author(s):  
◽  
Olufemi Fasina

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Viruses as obligate intracellular metabolic parasite require the capacity to orchestrate and modulate the host environment either in the nucleus or cytoplasm for their efficient reproductive life cycle. This warrants the use of diverse range of proteins expressed from the viral genome with the ability of regulating viral genome replication, transcription and translation, in addition antagonizing host factors inhibitory to the virus. Therefore, in order to achieve these goals, viruses utilizes gene expression strategies to expand their coding capacity. Gene expression mechanism such as transcription initiation, capping, splicing and 3�-end processing afford viruses the opportunities to utilize the eukaryotic metabolic machineries for generating proteome diversity. Parvoviruses and other DNA viruses effectively capitalize on their use of nuclear eukaryotic metabolic machineries to co-opt host cell factors for optimal replication and gene expression. Parvoviruses with small genome size and overlapping open reading frames utilize alternative transcription initiation, alternative splicing and alternative polyadenylation to co-ordinate the expression of its non-structural and structural proteins. In this work, we have characterized how two parvoviruses; Dependovirus AAV5 and Bocavirus Minute virus of canine (MVC) utilize alternative gene expression mechanisms and strategies to optimize expression of viral proteins from their genome.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 554 ◽  
Author(s):  
Cecilia Geijer ◽  
Ivan Pirkov ◽  
Wanwipa Vongsangnak ◽  
Abraham Ericsson ◽  
Jens Nielsen ◽  
...  

2019 ◽  
Vol 106 ◽  
pp. 99-107 ◽  
Author(s):  
Hege Lund ◽  
Anne Flore Bakke ◽  
Ingunn Sommerset ◽  
Sergey Afanasyev ◽  
Geir Schriwer ◽  
...  

2007 ◽  
Vol 107 (1) ◽  
pp. 94-108 ◽  
Author(s):  
Daniel Lee ◽  
Ichiro Yuki ◽  
Yuichi Murayama ◽  
Alexander Chiang ◽  
Ichiro Nishimura ◽  
...  

Object The authors describe the process of thrombus organization in the swine surgical aneurysm model. Methods Lateral carotid artery aneurysms with immediately induced thrombosis were created in 31 swine for a time-course study. Aneurysms were evaluated at 1, 3, 7, 14, 30, and 90 days after they were created. Histological analyses included quantitative immunohistochemical studies and evaluation of collagen deposition. Complementary DNA microarray analysis was performed for gene expression profiling. The lists of up- and downregulated genes were cross-matched with lists of genes known to be associated with cytokines or the extracellular matrix. The expression of selected genes was quantified using real-time polymerase chain reaction. Functional clustering was performed with the Expression Analysis Systematic Explorer (EASE) bioinformatics package. Results Histological analysis demonstrated leukocyte and macrophage infiltration in the thrombus at Day 3, myofibroblast infiltration at Days 7 to 14, and progressive collagen deposition and contraction thereafter. Tissue organization occurred in a centripetal fashion. A previously undescribed reticular network of connective tissue was observed at the periphery of the aneurysm at Day 3. Macrophages appeared critical to this thrombus organization. A total of 1109 genes were significantly changed from reference time zero during the time course: CXCL14, which produces a monocyte-specific chemokine, was upregulated over 100-fold throughout the time course; IGF1 was upregulated fourfold at Day 7, whereas IGFBP2 was downregulated approximately 50% at Days 7 and 14. Osteopontin (SPP1) upregulation increased from 30-fold at Day 30 to 45-fold at Day 14. The EASE analysis yielded eight functional classes of gene expression. Conclusions This investigation provides a detailed histological and molecular analysis of thrombus organization in the swine aneurysm model. The companion study will describe the effect of embolic bioabsorbable polymers on this process.


2009 ◽  
Vol 20 (12) ◽  
pp. 1000-1012 ◽  
Author(s):  
Shu-fei Lin ◽  
Hua Wei ◽  
Dennis Maeder ◽  
Renty B. Franklin ◽  
Pei Feng

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A554-A554
Author(s):  
Rhodes Ford ◽  
Paolo Vignali ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Andrew Frisch ◽  
...  

BackgroundTumor-infiltrating CD8+ T cells have been characterized by their exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors, such as PD-1 and Tim-3. These receptors mark the progression towards exhaustion from a progenitor stage (PD-1Low) to a terminally exhausted stage (PD-1+Tim-3+). While the epigenetics of tumor-infiltrating T cells are unique compared to naïve, effector, and memory populations, how the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both activating (H3K4me3) and repressive (H3K27me3) epigenetic modifications that inhibit gene expression. In contrast to stem cells which exhibit bivalency, bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia. Secondly, we have also identified a unique set of enhancers, characterized by H3K27ac that do not drive gene expression. These enhancers are enriched for AP-1 transcription factors, whereas enhancers that correlate with gene transcription are enriched for nuclear receptor (NR) transcription factors. Intriguingly, while most AP-1 and NR transcription factors are not expressed in terminally exhausted cells, we found that Batf, an inhibitory AP-1 family member, and Nr4a2, a NR known to promote both exhaustion and modify chromatin were specifically expressed in terminally exhausted cells. These data suggest the balance of Batf and Nr4a2 may modulate the enhancer landscape to promote terminal exhaustion, while hypoxia simultaneously promotes hypermethylation and gene repression.ConclusionsOur study defines for the first time the features of epigenetic dysfunction in tumor-mediated T cell exhaustion and deepens our understanding of the epigenetic regulation of gene expression. These observations are the bases for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Jessica M Salmon ◽  
Casie Leigh Reed ◽  
Maddyson Bender ◽  
Helen Lorraine Mitchell ◽  
Vanessa Fox ◽  
...  

Krüppel-like factors (KLFs) are a family of transcription factors that play essential roles in the development and differentiation of the hematopoietic system. These transcription factors possess highly conserved C-terminal zinc-finger motifs, which enable their binding to GC-rich, or CACC-box, motifs in promoter and enhancer regions of target genes. The N-terminal domains of these proteins are more varied and mediate the recruitment of various co-factors, which can form a complex with either activator or repressor function. Acting primarily as a gene repressor through its recruitment of CtBPs and histone deacetylases (HDACs) [1], we have recently shown that KLF3 competes with KLF1 bound sites in the genome to repress gene expression during erythropoiesis [2]. However, the function of Klf3 in other lineages has been less well studied. This widely expressed transcription factor has reported roles in the differentiation of marginal zone B cells, eosinophil function and inflammation [3]. We utilised the Klf3-null mouse model [4] to more closely examine the role of Klf3 in innate inflammatory cells. These mice exhibit elevated white cell counts, including monocytes (Figure 1A), and inflammation of the skin. Conditional knockout of Klf4 in myeloid cells leads to a deficiency of inflammatory macrophages [5]. To test our hypothesis KLF3 normally represses inflammation, perhaps by antagonising the action of KLF4, bone-marrow derived macrophages (BMDM) were generated from wild-type or Klf3-null mice and stimulated with the bacterial toxin lipopolysaccharide (LPS). In wild type BMDM, LPS induces Klf3 gene expression and activation then delayed repression of target genes such as Lgals3 (galectin-3) over a 21 hour time course (Figure 1B). Quantitative real-time PCR and mRNA-seq of WT v Klf3-null macrophages identified ~100 differentially expressed genes involved in proliferation, macrophage activation and inflammation. We transduced the monocyte cell line, RAW264.7 (that expresses Klf4, Klf3 and Klf2), with a retroviral vector expressing a tamoxifen-inducible KLF3-ER fusion construct. KLF3 induced cell cycle arrest and macrophage differentiation. We will report on KLF3-induced gene expression changes (repression and activation), and ChIP-seq for KLF3, in RAW cells. The results shed light on the mechanism by which KLF3 normally represses monocyte/macrophage responses to infection. This study highlights the importance of key transcriptional regulators that tightly control gene expression during inflammation. Loss of Klf3 leads to alterations in this process, resulting in hyper-activation of inflammatory macrophages, increased white cell counts and inflammation of the skin. A greater knowledge of the inflammatory process and how it is regulated is important for our understanding of acute infection and inflammatory disease. Further studies are planned to investigate the role of the KLF3 transcription factor in response to inflammation in vivo. References: 1. Pearson, R., et al., Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol, 2007. W2. Ilsley, M.D., et al., Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res, 2017. 45(11): p. 6572-6588. W3. Knights, A.J., et al., Kruppel-like factor 3 (KLF3) suppresses NF-kappaB-driven inflammation in mice. J Biol Chem, 2020. 295(18): p. 6080-6091. W4. Sue, N., et al., Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008. 28(12): p. 3967-78. W5. Alder, J.K., et al., Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol, 2008. 180(8): p. 5645-52. Figure 1: Elevated WCC (A) and inflammatory markers (B) in BMDM after LPS stimulation. 1. Total WCC in adult mice (3-6 months old) of the indicated genotypes. There is a statistically significant increase in the WCC in Klf3-/- v wild type mice (P<0.001 by student's t test). B. Time course (hours) after LPS stimulation of confluent BMDM. Klf3 is induced 3-fold by LPS and KLF3-target genes such as Lgals3 are not fully repressed by 21 hours in knockout mice. Figure 1 Disclosures Perkins: Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Author(s):  
Ritu Mann-Nüttel ◽  
Shafaqat Ali ◽  
Patrick Petzsch ◽  
Karl Köhrer ◽  
Judith Alferink ◽  
...  

Transcription factors (TFs) control gene expression by direct binding to regulatory regions of target genes but also by impacting chromatin landscapes and thereby modulating DNA accessibility for other TFs. To date, the global TF reservoir in plasmacytoid dendritic cells (pDCs), a cell type with the unique capacity to produce unmatched amounts of type I interferons, has not been fully characterized. To fill this gap, we have performed a comprehensive analysis in naïve and TLR9-activated pDCs in a time course study covering early timepoints after stimulation (2h, 6h, 12h) integrating gene expression (RNA-Seq), chromatin landscape (ATAC-Seq) and Gene Ontology studies. We found that 70% of all described TFs are expressed in pDCs for at least one stimulation time point and that activation predominantly "turned on" the chromatin regions associated with TF genes. We hereby define the complete set of TLR9-regulated TFs in pDCs. Further, this study identifies the AP-1 family of TFs as potentially important but so far less well characterized regulators of pDC function.


Author(s):  
Paula Dobrinić ◽  
Aleksander T. Szczurek ◽  
Robert J. Klose

AbstractThe Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The interrelatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved. Here, by exploiting rapid degron-based approaches and time-resolved genomics we kinetically dissect Polycomb-mediated repression and discover that PRC1 functions independently of PRC2 to counteract RNA polymerase II binding and transcription initiation. Using single-cell gene expression analysis, we reveal that PRC1 acts uniformly within the cell population, and that repression is achieved by controlling transcriptional burst frequency. These important new discoveries provide a mechanistic and conceptual framework for Polycomb-dependent transcriptional control.


2009 ◽  
Vol 90 (11) ◽  
pp. 2581-2591 ◽  
Author(s):  
Edward H. Tsao ◽  
Paul Kellam ◽  
Cheryl S. Y. Sin ◽  
Jane Rasaiyaah ◽  
Paul D. Griffiths ◽  
...  

The lytic gene expression of several members of the human herpesvirus family has been profiled by using gene-expression microarrays; however, the lytic cascade of roseoloviruses has not been studied in similar depth. Based on the complete DNA genome sequences of human herpesvirus 6 variant A (HHV-6A) and variant B (HHV-6B), we constructed a cDNA microarray containing DNA probes to their predicted open reading frames, plus 914 human genes. Gene-expression profiling of HHV-6B strain Z29 in SupT1 cells over a 60 h time-course post-infection, together with kinetic classification of the HHV-6B genes in the presence of either cycloheximide or phosphonoacetic acid, allowed the placement of HHV-6B genes into defined kinetic classes. Eighty-nine HHV-6B genes were divided into four different expression kinetic classes: eight immediate-early, 44 early, 33 late and four biphasic. Clustering of genes with similar expression profiles implied a shared function, thus revealing possible roles of previously uncharacterized HHV-6B genes.


Sign in / Sign up

Export Citation Format

Share Document