scholarly journals Design of optical cavity for air sanification through ultraviolet germicidal irradiation

Author(s):  
Matteo Lombini ◽  
Emiliano Diolaiti ◽  
Adriano De Rosa ◽  
Luigi Lessio ◽  
Giovanni Pareschi ◽  
...  

The transmission of airborne pathogens represents a major issue to worldwide public health. Ultraviolet light irradiation can contribute to the sanification of air to reduce the pathogen transmission. This study concerns the design of a compact filter for airborne pathogen inactivation by means of UV-C LED sources, whose effective irradiance is enhanced thanks to high reflective surfaces. Ray-tracing and computational fluid dynamic simulations are both used to model the device and to maximize the performance inside the filter volume. Simulations foresee the inhibition of SARS-Cov 2 also in the case of high air fluxes. This study demonstrates that current available LED technology is effective for air sanification purposes.

2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3561
Author(s):  
Antti Uusitalo ◽  
Aki Grönman

The losses of supercritical CO2 radial turbines with design power scales of about 1 MW were investigated by using computational fluid dynamic simulations. The simulation results were compared with loss predictions from enthalpy loss correlations. The aim of the study was to investigate how the expansion losses are divided between the stator and rotor as well as to compare the loss predictions obtained with the different methods for turbine designs with varying specific speeds. It was observed that a reasonably good agreement between the 1D loss correlations and computational fluid dynamics results can be obtained by using a suitable set of loss correlations. The use of different passage loss models led to high deviations in the predicted rotor losses, especially with turbine designs having the highest or lowest specific speeds. The best agreement in respect to CFD results with the average deviation of less than 10% was found when using the CETI passage loss model. In addition, the other investigated passage loss models provided relatively good agreement for some of the analyzed turbine designs, but the deviations were higher when considering the full specific speed range that was investigated. The stator loss analysis revealed that despite some differences in the predicted losses between the methods, a similar trend in the development of the losses was observed as the turbine specific speed was changed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Zhang ◽  
Yijie Huang ◽  
Tao Ai ◽  
Jun Luo ◽  
Hanmin Liu

Abstract Background Following the outbreak of the COVID-19 pandemic, a change in the incidence and transmission of respiratory pathogens was observed. Here, we retrospectively analyzed the impact of COVID-19 on the epidemiologic characteristics of Mycoplasma pneumoniae infection among children in Chengdu, one of the largest cities of western China. Method M. pneumoniae infection was diagnosed in 33,345 pediatric patients with respiratory symptoms at the Chengdu Women’s & Children’s Central Hospital between January 2017 and December 2020, based on a serum antibody titer of ≥1:160 measured by the passive agglutination assay. Differences in infection rates were examined by sex, age, and temporal distribution. Results Two epidemic outbreaks occurred between October-December 2017 and April-December 2019, and two infection peaks were detected in the second and fourth quarters of 2017, 2018, and 2019. Due to the public health response to COVID-19, the number of positive M. pneumoniae cases significantly decreased in the second quarter of 2020. The number of M. pneumoniae infection among children aged 3–6 years was higher than that in other age groups. Conclusions Preschool children are more susceptible to M. pneumoniae infection and close contact appears to be the predominant factor favoring pathogen transmission. The public health response to COVID-19 can effectively control the transmission of M. pneumoniae.


Fuel ◽  
2009 ◽  
Vol 88 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Efim Korytnyi ◽  
Roman Saveliev ◽  
Miron Perelman ◽  
Boris Chudnovsky ◽  
Ezra Bar-Ziv

2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


2009 ◽  
Vol 13 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Enrico Mollica ◽  
Eugenio Giacomazzi ◽  
Marco di

In this article a combustor burning hydrogen and air in mild regime is numerically studied by means of computational fluid dynamic simulations. All the numerical results show a good agreement with experimental data. It is seen that the flow configuration is characterized by strong exhaust gas recirculation with high air preheating temperature. As a consequence, the reaction zone is found to be characteristically broad and the temperature and concentrations fields are sufficiently homogeneous and uniform, leading to a strong abatement of nitric oxide emissions. It is also observed that the reduction of thermal gradients is achieved mainly through the extension of combustion in the whole volume of the combustion chamber, so that a flame front no longer exists ('flameless oxidation'). The effect of preheating, further dilution provided by inner recirculation and of radiation model for the present hydrogen/air mild burner are analyzed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alisha Geldert ◽  
Alison Su ◽  
Allison W. Roberts ◽  
Guillaume Golovkine ◽  
Samantha M. Grist ◽  
...  

AbstractDuring public health crises like the COVID-19 pandemic, ultraviolet-C (UV-C) decontamination of N95 respirators for emergency reuse has been implemented to mitigate shortages. Pathogen photoinactivation efficacy depends critically on UV-C dose, which is distance- and angle-dependent and thus varies substantially across N95 surfaces within a decontamination system. Due to nonuniform and system-dependent UV-C dose distributions, characterizing UV-C dose and resulting pathogen inactivation with sufficient spatial resolution on-N95 is key to designing and validating UV-C decontamination protocols. However, robust quantification of UV-C dose across N95 facepieces presents challenges, as few UV-C measurement tools have sufficient (1) small, flexible form factor, and (2) angular response. To address this gap, we combine optical modeling and quantitative photochromic indicator (PCI) dosimetry with viral inactivation assays to generate high-resolution maps of “on-N95” UV-C dose and concomitant SARS-CoV-2 viral inactivation across N95 facepieces within a commercial decontamination chamber. Using modeling to rapidly identify on-N95 locations of interest, in-situ measurements report a 17.4 ± 5.0-fold dose difference across N95 facepieces in the chamber, yielding 2.9 ± 0.2-log variation in SARS-CoV-2 inactivation. UV-C dose at several on-N95 locations was lower than the lowest-dose locations on the chamber floor, highlighting the importance of on-N95 dose validation. Overall, we integrate optical simulation with in-situ PCI dosimetry to relate UV-C dose and viral inactivation at specific on-N95 locations, establishing a versatile approach to characterize UV-C photoinactivation of pathogens contaminating complex substrates such as N95s.


Sign in / Sign up

Export Citation Format

Share Document