scholarly journals Genomic prediction in an outcrossing and autotetraploid fruit crop: lessons from blueberry breeding

2021 ◽  
Author(s):  
Luís Felipe V. Ferrão ◽  
Rodrigo R. Amadeu ◽  
Juliana Benevenuto ◽  
Ivone de Bem Oliveira ◽  
Patricio R. Munoz

AbstractBlueberry (Vaccinium corymbosum and hybrids) is a specialty crop, with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to the expansion of production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on phenotypic recurrent selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry’s breeding cycles are costly and time-consuming, which results in low genetic gains per unit of time. Motivated by the application of molecular markers for a more accurate selection in early stages of breeding, we performed pioneering genomic prediction studies and optimization for implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based geno- typing and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic prediction studies and described the current achievements in the crop. In this paper, our contribution for genomic prediction in an autotetraploid crop is three-fold: i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for the use of genomic selection in blueberry, with potential to be applied to other polyploid species of a similar background.

2021 ◽  
Vol 12 ◽  
Author(s):  
Luís Felipe V. Ferrão ◽  
Rodrigo R. Amadeu ◽  
Juliana Benevenuto ◽  
Ivone de Bem Oliveira ◽  
Patricio R. Munoz

Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to expanding production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on recurrent phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry breeding cycles are costly and time consuming, which results in low genetic gains per unit of time. Motivated by applying molecular markers for a more accurate selection in the early stages of breeding, we performed pioneering genomic selection studies and optimization for its implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based genotyping and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic selection studies and showed for the first time its application in an independent validation set. In this paper, our contribution is three-fold: (i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for using genomic selection in blueberry, with the potential to be applied to other polyploid species of a similar background.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1591
Author(s):  
Sebastian Michel ◽  
Franziska Löschenberger ◽  
Ellen Sparry ◽  
Christian Ametz ◽  
Hermann Bürstmayr

The availability of cost-efficient genotyping technologies has facilitated the implementation of genomic selection into numerous breeding programs. However, some studies reported a superiority of pedigree over genomic selection in line breeding, and as, aside from systematic record keeping, no additional costs are incurring in pedigree-based prediction, the question about the actual benefit of fingerprinting several hundred lines each year might suggest itself. This study aimed thus on shedding some light on this question by comparing pedigree, genomic, and single-step prediction models using phenotypic and genotypic data that has been collected during a time period of ten years in an applied wheat breeding program. The mentioned models were for this purpose empirically tested in a multi-year forward prediction as well as a supporting simulation study. Given the availability of deep pedigree records, pedigree prediction performed similar to genomic prediction for some of the investigated traits if preexisting information of the selection candidates was available. Notwithstanding, blending both information sources increased the prediction accuracy and thus the selection gain substantially, especially for low heritable traits. Nevertheless, the largest advantage of genomic predictions can be seen for breeding scenarios where such preexisting information is not systemically available or difficult and costly to obtain.


Author(s):  
Christian R. Werner ◽  
R. Chris Gaynor ◽  
Daniel J. Sargent ◽  
Alessandra Lillo ◽  
Gregor Gorjanc ◽  
...  

AbstractFor genomic selection in clonal breeding programs to be effective, crossing parents should be selected based on genomic predicted cross performance unless dominance is negligible. Genomic prediction of cross performance enables a balanced exploitation of the additive and dominance value simultaneously. Here, we compared different strategies for the implementation of genomic selection in clonal plant breeding programs. We used stochastic simulations to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included i) a breeding program that introduced genomic selection in the first clonal testing stage, and ii) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were i) selection of parents based on genomic estimated breeding values, and ii) selection of parents based on genomic predicted cross performance. Selection of parents based on genomic predicted cross performance produced faster genetic gain than selection of parents based on genomic estimated breeding values because it substantially reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using genomic prediction of cross performance always produced the most genetic gain unless dominance was negligible. We conclude that i) in clonal breeding programs with genomic selection, parents should be selected based on genomic predicted cross performance, and ii) a two-part breeding program with parent selection based on genomic predicted cross performance to rapidly drive population improvement has great potential to improve breeding clonally propagated crops.


2019 ◽  
Author(s):  
Rajesh Joshi ◽  
Anders Skaarud ◽  
Mayet de Vera ◽  
Alejandro Tola Alvarez ◽  
Jørgen Ødegård

AbstractBackgroundOver the past three decades, Nile tilapia industry has grown into a significant aquaculture industry spread over 120 tropical and sub-tropical countries around the world accounting for 7.4% of global aquaculture production in 2015. Across species, genomic selection has been shown to increase predictive ability and genetic gain, also extending into aquaculture. Hence, the aim of this paper is to compare the predictive abilities of pedigree- and genomic-based models in univariate and multivariate approaches, with the aim to utilize genomic selection in a Nile tilapia breeding program. A total of 1444 fish were genotyped (48,960 SNP loci) and phenotyped for body weight at harvest (BW), fillet weight (FW) and fillet yield (FY). The pedigree-based analysis utilized a deep pedigree, including 14 generations. Estimated breeding values (EBVs and GEBVs) were obtained with traditional pedigree-based (PBLUP) and genomic (GBLUP) models, using both univariate and multivariate approaches. Prediction accuracy and bias were evaluated using 5 replicates of 10-fold cross-validation with three different cross-validation approaches. Further, impact of these models and approaches on the genetic evaluation was assessed based on the ranking of the selection candidates.ResultsGBLUP univariate models were found to increase the prediction accuracy and reduce bias of prediction compared to other PBLUP and multivariate approaches. Relative to pedigree-based models, prediction accuracy increased by ∼20% for FY, >75% for FW and >43% for BW. GBLUP models caused major re-ranking of the selection candidates, with no significant difference in the ranking due to univariate or multivariate GBLUP approaches. The heritabilities using multivariate GBLUP models for BW, FW and FY were 0.19 ± 0.04, 0.17 ± 0.04 and 0.23 ± 0.04 respectively. BW showed very high genetic correlation with FW (0.96 ± 0.01) and a slightly negative genetic correlation with FY (−0.11 ± 0.15).ConclusionPredictive ability of genomic prediction models is substantially higher than for classical pedigree-based models. Genomic selection is therefore beneficial to the Nile tilapia breeding program, and it is recommended in routine genetic evaluations of commercial traits in the Nile tilapia breeding nucleus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Amini ◽  
Felipe Restrepo Franco ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractRecent advances in genomic selection (GS) have demonstrated the importance of not only the accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead selection algorithm, for example, has been found to significantly outperform the widely used truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding parents that may not necessarily be elite themselves but have the best chance of producing elite progeny in the future. This paper presents the look ahead trace back algorithm as a new variant of the look ahead approach, which introduces several improvements to further accelerate genetic gain especially under imperfect genomic prediction. Perhaps an even more significant contribution of this paper is the design of opaque simulators for evaluating the performance of GS algorithms. These simulators are partially observable, explicitly capture both additive and non-additive genetic effects, and simulate uncertain recombination events more realistically. In contrast, most existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS algorithm to exploit certain critical information that may not be possible in actual breeding programs. Comprehensive computational experiments were carried out using a maize data set to compare a variety of GS algorithms under four simulators with different levels of opacity. These results reveal how differently a same GS algorithm would interact with different simulators, suggesting the need for continued research in the design of more realistic simulators. As long as GS algorithms continue to be trained in silico rather than in planta, the best way to avoid disappointing discrepancy between their simulated and actual performances may be to make the simulator as akin to the complex and opaque nature as possible.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Osval Antonio Montesinos-López ◽  
Abelardo Montesinos-López ◽  
Paulino Pérez-Rodríguez ◽  
José Alberto Barrón-López ◽  
Johannes W. R. Martini ◽  
...  

Abstract Background Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed including the standard additive genetic effect model for which the variance components are estimated with mixed model equations. In recent years, deep learning (DL) methods have been considered in the context of genomic prediction. The DL methods are nonparametric models providing flexibility to adapt to complicated associations between data and output with the ability to adapt to very complex patterns. Main body We review the applications of deep learning (DL) methods in genomic selection (GS) to obtain a meta-picture of GS performance and highlight how these tools can help solve challenging plant breeding problems. We also provide general guidance for the effective use of DL methods including the fundamentals of DL and the requirements for its appropriate use. We discuss the pros and cons of this technique compared to traditional genomic prediction approaches as well as the current trends in DL applications. Conclusions The main requirement for using DL is the quality and sufficiently large training data. Although, based on current literature GS in plant and animal breeding we did not find clear superiority of DL in terms of prediction power compared to conventional genome based prediction models. Nevertheless, there are clear evidences that DL algorithms capture nonlinear patterns more efficiently than conventional genome based. Deep learning algorithms are able to integrate data from different sources as is usually needed in GS assisted breeding and it shows the ability for improving prediction accuracy for large plant breeding data. It is important to apply DL to large training-testing data sets.


2016 ◽  
Vol 15 (4) ◽  
Author(s):  
C.F. Azevedo ◽  
M.D.V. Resende ◽  
F.F. Silva ◽  
J.M.S. Viana ◽  
M.S.F. Valente ◽  
...  

EDIS ◽  
2007 ◽  
Vol 2007 (16) ◽  
Author(s):  
Brent K. Harbaugh ◽  
Zhanao Deng

ENH-1066, a 5-page fact sheet by Brent K. Harbaugh and Zhanao Deng, reports the release of these cultivars appropriate for flowering potted plants, with intermediate height and a spray-type flower display. Published by the UF Department of Environmental Horticulture, February 2007.


EDIS ◽  
2020 ◽  
Vol 2016 (3) ◽  
pp. 3
Author(s):  
Rodrick Z. Mwatuwa ◽  
Christian T, Christensen ◽  
Lincoln Zotarelli

This article introduces the potato variety, ‘Atlantic’, which was tested in trials at the University of Florida.’Atlantic’ is a white-skinned, chipping potato commonly cultivated in Florida and resealed as a white mutant of the USDA breeding program. This three-page fact sheet provides the general characteristics, season length and growth information, fertilization and planting instructions, as well as disease information for the potato variety, ‘Atlantic’. Written by Rodrick Z. Mwatuwa, Christian T. Christensen, and Lincoln Zotarelli, and published by the Horticultural Sciences Department. http://edis.ifas.ufl.edu/hs1278


2021 ◽  
Vol 12 ◽  
Author(s):  
Jana Obšteter ◽  
Janez Jenko ◽  
Gregor Gorjanc

This paper evaluates the potential of maximizing genetic gain in dairy cattle breeding by optimizing investment into phenotyping and genotyping. Conventional breeding focuses on phenotyping selection candidates or their close relatives to maximize selection accuracy for breeders and quality assurance for producers. Genomic selection decoupled phenotyping and selection and through this increased genetic gain per year compared to the conventional selection. Although genomic selection is established in well-resourced breeding programs, small populations and developing countries still struggle with the implementation. The main issues include the lack of training animals and lack of financial resources. To address this, we simulated a case-study of a small dairy population with a number of scenarios with equal available resources yet varied use of resources for phenotyping and genotyping. The conventional progeny testing scenario collected 11 phenotypic records per lactation. In genomic selection scenarios, we reduced phenotyping to between 10 and 1 phenotypic records per lactation and invested the saved resources into genotyping. We tested these scenarios at different relative prices of phenotyping to genotyping and with or without an initial training population for genomic selection. Reallocating a part of phenotyping resources for repeated milk records to genotyping increased genetic gain compared to the conventional selection scenario regardless of the amount and relative cost of phenotyping, and the availability of an initial training population. Genetic gain increased by increasing genotyping, despite reduced phenotyping. High-genotyping scenarios even saved resources. Genomic selection scenarios expectedly increased accuracy for young non-phenotyped candidate males and females, but also proven females. This study shows that breeding programs should optimize investment into phenotyping and genotyping to maximize return on investment. Our results suggest that any dairy breeding program using conventional progeny testing with repeated milk records can implement genomic selection without increasing the level of investment.


Sign in / Sign up

Export Citation Format

Share Document