scholarly journals Agricultural pressures impair trophic link between aquatic microorganisms and invertebrates

2021 ◽  
Author(s):  
Rody Blom ◽  
Henrik Barmentlo ◽  
Maarten Schrama ◽  
Ellard Hunting

Decadal declines in aquatic ecosystem health prompted monitoring efforts and studies on effects of human practices on aquatic biodiversity, yet a consideration of ecological processes and trophic linkages is increasingly required to develop an in-depth understanding of aquatic food webs and its vulnerability to human activities. Here, we test in laboratory incubations using natural organic matter whether agricultural practices have an effect on two interacting ecological processes (i.e., decomposition and invertebrate growth) as the relevant temporal components of the trophic linkage between aquatic microbial communities and aquatic invertebrates. We further assess whether these altered trophic interactions are visible on ecologically relevant scales. We observed clear patterns in agricultural constraints on microbial decomposition, which coincided with reduced invertebrate growth and an unexpected increase in invertebrate consumption of organic matter. Similar differences in invertebrate length depending on land use were observed in our field survey, thereby providing important clues on the relevance and vulnerability of interdependent processes that can serve to improve future forays in monitoring ecosystem health.

1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


2004 ◽  
Vol 19 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Yuka Ohnishi ◽  
Minoru Fujii ◽  
Shinichiro Murashige ◽  
Atsushi Yuzawa ◽  
Hitoshi Miyasaka ◽  
...  

Author(s):  
Susan Stonich

Understanding the factors related to destructive ecological processes in the tropics has expanded significantly in the last decade. Much has been learned about heterogeneity in geomorphology, soils, hydrology, and climate and about associated vulnerability to ecological damage. Research on cropping systems has divulged both the suitability and the liability in swidden agricultural practices and has led to recommendations involving alternative cropping and agroforestry complexes (Altieri 1987). At the same time, there has been a growing awareness that a more comprehensive knowledge of tropical ecology and enlarged technological and/or agricultural options will not necessarily affect a sustainable ecology (Altieri and Hecht 1990; Redclift 1984, 1987). Research on peasant economies in Latin America and elsewhere has demonstrated the existence of a highly differentiated peasantry, the vast majority of whom are landless or land-poor and who are more dependent on income earned from off-farm than from on-farm sources (Collins 1986; Deere and Wasserstrom 1981; Stonich 1991b). Such studies have demonstrated that systemic interconnections among family and corporate farmers with landholdings of all sizes promote environmental destruction (Stonich 1989); have established the existence of labor scarcity rather than labor surpluses in many peasant communities and the related environmental consequences (Brush 1977,1987; Collins 1987,1988; Posner and MacPherson 1982; Stonich 1993); and have called for rural and agricultural development policy that takes into account a socially differentiated peasantry and diversified rural poverty (de Janvry and Sadoulet 1989). It is increasingly evident that ecological destruction cannot be fathomed apart from the demographic, institutional, and social factors that influence the agricultural practices and other natural resource management decisions of agricultural producers. This paper describes a multidisciplinary methodology designed to examine the interactions among demographic trends, social processes, agricultural production decisions, and ecological decline in southern Honduras, a region characterized by widespread and worsening human impoverishment and environmental degradation. The methodology integrated the research efforts and databases compiled by anthropologists from the University of Kentucky using a farming systems approach, who were part of the socioeconomic component of the International Sorghum Millet Project (INTSORMIL) with potentially complementary research conducted by the natural and agricultural scientists working as part of the Comprehensive Resource Inventory and Evaluation System Project (CRIES) at Michigan State University.


2020 ◽  
Vol 15 (No. 2) ◽  
pp. 67-74 ◽  
Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

The negative effects of the current agricultural practices include erosion, acidification, loss of soil organic matter (dehumification), loss of soil structure, soil contamination by risky elements, reduction of biological diversity and land use for non-agricultural purposes. All these effects are a huge risk to the further development of soil quality from an agronomic point of view and its resilience to projected climate change. Organic matter has a crucial role in it. Relatively significant correlations with the quality or the health of soil parameters and the soil organic matter or some fraction of the soil organic matter have been found. In particular, Ctot, Cox, humic and fulvic acids, the C/N ratio, and glomalin. Our work was focused on glomalin, a glycoprotein produced by the hyphae and spores of arbuscular mycorrhizal fungi (AMF), which we classify as Glomeromycota. Arbuscular mycorrhiza, and its molecular pathways, is not a well understood phenomenon. It appears that many proteins are involved in the arbuscular mycorrhiza from which glomalin is probably one of the most significant. This protein is also responsible for the unique chemical and physical properties of soils and has an ecological and economical relevance in this sense and it is a real product of the mycorrhiza. Glomalin is very resistant to destruction (recalcitrant) and difficult to dissolve in water. Its extraction requires specific conditions: high temperature (121°C) and a citrate buffer with a neutral or alkaline pH. Due to these properties, glomalin (or its fractions) are very stable compounds that protect the soil aggregate surface. In this review, the actual literature has been researched and the importance of glomalin is discussed.  


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3059
Author(s):  
Diogo Folhas ◽  
Armando C. Duarte ◽  
Martin Pilote ◽  
Warwick F. Vincent ◽  
Pedro Freitas ◽  
...  

Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems.


2003 ◽  
Vol 63 (2) ◽  
pp. 269-281 ◽  
Author(s):  
A. L. Henriques-Oliveira ◽  
J. L. Nessimian ◽  
L. F. M. Dorvillé

Chironomids larvae are frequently one of the most abundant and diverse groups of insects in several kinds of aquatic environments. Also, they play a major role in the aquatic food webs, representing a major link among producers and secondary consumers. This work investigates the feeding behavior of the chironomid larvae present in the Rio da Fazenda, situated in the Parque Nacional da Tijuca, Rio de Janeiro, Brazil, between August 1994 and May 1995. Algae, fungi, pollen, leaf and wood fragments, animal remains, detritus and silt were the main gut contents found in the larvae studied. The main food item ingested by the larvae was detritus, except for the Stenochironomus whose main food source was leaf and wood fragments. Tanypodinae exhibited a large quantity of animal remains of several kinds in the diet. During the period studied it was observed that the diet of 16 genera (out of 24 studied) varied. Tanypodinae had mainly coarse particulate organic matter (> 1 mm) in the gut contents, while Chironominae and Orthocladiinae had fine particulate organic matter (< 1 mm).


Sign in / Sign up

Export Citation Format

Share Document