scholarly journals Analysis of immune subtypes across the epithelial-mesenchymal plasticity spectrum

2021 ◽  
Author(s):  
Priyanka Chakraborty ◽  
Emily Chen ◽  
Isabelle McMullens ◽  
Andrew J. Armstrong ◽  
Mohit Kumar Jolly ◽  
...  

AbstractEpithelial-mesenchymal plasticity plays a critical role in many solid tumor types as a mediator of metastatic dissemination and treatment resistance. In addition, there is also a growing appreciation that the epithelial/mesenchymal status of a tumor plays a role in immune evasion and immune suppression. A deeper understanding of the immunological features of different tumor types has been facilitated by the availability of large gene expression datasets and the development of methods to deconvolute bulk RNA-Seq data. These resources have generated powerful new ways of characterizing tumors, including classification of immune subtypes based on differential expression of immunological genes. In the present work, we combine scoring algorithms to quantify epithelial-mesenchymal plasticity with immune subtype analysis to understand the relationship between epithelial plasticity and immune subtype across cancers. We find heterogeneity of epithelial-mesenchymal transition (EMT) status both within and between cancer types, with greater heterogeneity in the expression of EMT-related factors than of MET-related factors. We also find that specific immune subtypes have associated EMT scores and differential expression of immune checkpoint markers.

2017 ◽  
Vol 203 (2) ◽  
pp. 114-127 ◽  
Author(s):  
Reem Malek ◽  
Hailun Wang ◽  
Kekoa Taparra ◽  
Phuoc T. Tran

Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Raffaele Palmirotta ◽  
Mauro Cives ◽  
David Della-Morte ◽  
Barbara Capuani ◽  
Davide Lauro ◽  
...  

The human sirtuins (SIRT1–SIRT7) enzymes are a highly conserved family of NAD+-dependent histone deacetylases, which play a critical role in the regulation of a large number of metabolic pathways involved in stress response and aging. Cancer is an age-associated disease, and sirtuins may have a considerable impact on a plethora of processes that regulate tumorigenesis. In particular, growing evidence suggests that sirtuins may modulate epithelial plasticity by inducing transcriptional reprogramming leading to epithelial-mesenchymal transition (EMT), invasion, and metastases. Though commonly regarded as EMT inducers, sirtuins may also suppress this process, and their functional properties seem to largely depend on the cellular context, stage of cancer development, tissue of origin, and microenvironment architecture. Here, we review the role of sirtuins in cancer biology with particular emphasis on their role in EMT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. E. Anselmino ◽  
M. V. Baglioni ◽  
F. Malizia ◽  
N. Cesatti Laluce ◽  
C. Borini Etichetti ◽  
...  

AbstractDrug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.


2021 ◽  
pp. 153537022110230
Author(s):  
Zhichang Pan ◽  
Yu Zhang ◽  
Chuanyong Li ◽  
Yuan Yin ◽  
Rui Liu ◽  
...  

Deep venous thrombosis is one of the most common venous thromboembolic diseases and has a low cure rate and a high postoperative recurrence rate. Furthermore, emerging evidence indicates that microRNAs are involved in deep venous thrombosis. miR-296-5p is an important microRNA that plays a critical role in various cellular functions, and S100A4 is closely related to vascular function. miR-296-5p is downregulated in deep venous thrombosis patients, and its predicted target S100A4 is upregulated in deep venous thrombosis patients. Therefore, it was hypothesized that miR-296-5p may play a vital role in the development of deep venous thrombosis by targeting S100A4. An Ox-LDL-stimulated HUVEC and deep venous thrombosis mouse model was employed to detect the biological functions of miR-296-5p and S100A4. Dual luciferase reporter assays and pull-down assays were used to authenticate the interaction between miR-296-5p and S100A4. ELISA and Western blotting were employed to detect the protein levels of thrombosis-related factors and the endothelial-to-mesenchymal transition (EndMT)-related factors. The miR-296-5p levels were reduced, while the S100A4 levels were enhanced in deep venous thrombosis patients, and the miR-296-5p levels were negatively correlated with the S100A4 levels in deep venous thrombosis patients. miR-296-5p suppressed S100A4 expression by targeting the 3ʹ UTR of S100A4. MiR-296-5p knockdown accelerated ox-LDL-induced HUVEC apoptosis, oxidative stress, thrombosis-related factor expression, and EndMT, while S100A4 knockdown antagonized these effects in ox-LDL-induced HUVECs. S100A4 knockdown reversed the effect induced by miR-296-5p knockdown. Moreover, the in vivo studies revealed that miR-296-5p knockdown in deep venous thrombosis mice exacerbated deep venous thrombosis formation, whereas S100A4 knockdown had the opposite effect. These results indicate that elevated miR-296-5p inhibits deep venous thrombosis formation by inhibiting S100A4 expression. Both miR-296-5p and S100A4 may be potential diagnostic markers and therapeutic targets for deep venous thrombosis.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Daniel Sieiro ◽  
Anne C Rios ◽  
Claire E Hirst ◽  
Christophe Marcelle

How cells in the embryo coordinate epithelial plasticity with cell fate decision in a fast changing cellular environment is largely unknown. In chick embryos, skeletal muscle formation is initiated by migrating Delta1-expressing neural crest cells that trigger NOTCH signaling and myogenesis in selected epithelial somite progenitor cells, which rapidly translocate into the nascent muscle to differentiate. Here, we uncovered at the heart of this response a signaling module encompassing NOTCH, GSK-3β, SNAI1 and β-catenin. Independent of its transcriptional function, NOTCH profoundly inhibits GSK-3β activity. As a result SNAI1 is stabilized, triggering an epithelial to mesenchymal transition. This allows the recruitment of β-catenin from the membrane, which acts as a transcriptional co-factor to activate myogenesis, independently of WNT ligand. Our results intimately associate the initiation of myogenesis to a change in cell adhesion and may reveal a general principle for coupling cell fate changes to EMT in many developmental and pathological processes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jia-Rong Huang ◽  
Sheng-Te Wang ◽  
Meng-Ning Wei ◽  
Kun Liu ◽  
Jing-Wen Fu ◽  
...  

Colorectal cancer is one of the most common and lethal cancers in the world. An important causative factor of colorectal cancer is ulcerative colitis. In this study, we investigated the therapeutic effects of piperlongumine (PL) on the dextran sulfate sodium (DSS)-induced acute colitis and azoxymethane (AOM)/DSS-induced colorectal cancer mouse models. Our results showed that PL could inhibit the inflammation of DSS-induced mouse colitis and reduce the number of large neoplasms (diameter >2 mm) of AOM/DSS-induced mouse colorectal cancer by downregulation of proinflammatory cytokines cyclooxygenase-2 and interleukin-6 and epithelial-mesenchymal transition-related factors, β-catenin, and snail expressions, but fail to improve the colitis symptoms and to decrease the incidence of colonic neoplasms and the number of small neoplasms (diameter <2 mm). These data suggested that PL might be an effective agent in treating colitis and colorectal cancer.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bei Li ◽  
Ang Li ◽  
Zhen You ◽  
Jingchang Xu ◽  
Sha Zhu

Abstract Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.


2020 ◽  
pp. 1-23
Author(s):  
Divya Adiga ◽  
Raghu Radhakrishnan ◽  
Sanjiban Chakrabarty ◽  
Prashant Kumar ◽  
Shama Prasada Kabekkodu

Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca<sup>2+</sup>) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca<sup>2+</sup> signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca<sup>2+</sup> signal remodeling in the regulation of EMT and metastasis in cancer.


Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 338
Author(s):  
Kumar Jayant ◽  
Nagy Habib ◽  
Kai W. Huang ◽  
Jane Warwick ◽  
Ramesh Arasaradnam

Recent advancement in the immunological understanding of genesis of hepatocellular carcinoma (HCC) has implicated a decline in anti-tumour immunity on the background of chronic inflammatory state of liver parenchyma. The development of HCC involves a network of immunological activity in the tumour microenvironment involving continuous interaction between tumour and stromal cells. The reduction in anti-tumour immunity is secondary to changes in various immune cells and cytokines, and the tumour microenvironment plays a critical role in modulating the process of liver fibrosis, hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), tumor invasion and metastasis. Thus, it is considered as one of primary factor behind the despicable tumour behavior and observed poor survival; along with increased risk of recurrence following treatment in HCC. The primary intent of the present review is to facilitate the understanding of the complex network of immunological interactions of various immune cells, cytokines and tumour cells associated with the development and progression of HCC.


Sign in / Sign up

Export Citation Format

Share Document