scholarly journals A short ERK5 isoform modulates nucleocytoplasmic shuttling of active ERK5 and associates with poor survival in breast cancer

2021 ◽  
Author(s):  
Mariska Miranda ◽  
Jodi M. Saunus ◽  
Seçkin Akgül ◽  
Mahdi Moradi Marjaneh ◽  
Jamie R. Kutasovic ◽  
...  

AbstractBackgroundThe nucleocytoplasmic shuttling of ERK5 has gained recent attention as a regulator of its diverse roles in cancer progression but the exact mechanisms for this shuttling are still under investigation.MethodsUsing in vitro, in vivo and in silico studies, we investigated the roles of shorter ERK5 isoforms in regulating the nucleocytoplasmic shuttling of active phosphorylated-ERK5 (pERK5). Retrospective cohorts of primary and metastatic breast cancer cases were used to evaluate the association of the subcellular localization of pERK5 with clinicopathological features.ResultsExtranuclear localization of pERK5 was observed during cell migration in vitro and at the invasive fronts of metastatic tumors in vivo. The nuclear and extranuclear cell fractions contained different isoforms of pERK5, which are encoded by splice variants expressed in breast and other cancers in the TCGA data. One isoform, isoform-3, lacks the C-terminal transcriptional domain and the nuclear localization signal. The co-expression of isoform-3 and full-length ERK5 associated with high epithelial-to-mesenchymal transition (EMT) and poor patient survival. Experimentally, expressing isoform-3 with full-length ERK5 in breast cancer cells increased cell migration, drove EMT and led to tamoxifen resistance. In breast cancer patient samples, pERK5 showed variable subcellular localizations where its extranuclear localization associated with aggressive clinicopathological features, metastasis, and poor survival.ConclusionOur studies support a model of ERK5 nucleocytoplasmic shuttling driven by splice variants in an interplay between mesenchymal and epithelial states during metastasis. Using ERK5 as a biomarker and a therapeutic target should account for its splicing and context-dependent biological functions.Graphical AbstractERK5 isoform-3 expression deploys active ERK5 (pERK5) outside the nucleus to facilitate EMT and cell migration. In cells dominantly expressing isoform-1, pERK5 shuttles to the nucleus to drive cell expansion.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yu-Mei Liao ◽  
Ya-Hui Wang ◽  
Jung-Tung Hung ◽  
Yu-Ju Lin ◽  
Yen-Lin Huang ◽  
...  

Abstract Background Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. β1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. Methods Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan–Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. Results Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of β-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. Conclusion Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.


2020 ◽  
Author(s):  
Monish Ram Makena ◽  
Myungjun Ko ◽  
Donna Kimberly Dang ◽  
Rajini Rao

AbstractThe secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and β-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.Simple SummaryThe triple receptor negative breast cancer subtype, or TNBC, currently has no tailored treatment options. TNBC is highly metastatic, associated with high patient mortality, and disproportionately occurs in Black/African American women where it contributes to racial disparities in health outcomes. Therefore, we focused on new therapeutic approaches to TNBC. We discovered that levels of the Calcium-ATPase SPCA2 are abnormally low in TNBC and that these low levels correlate with poor survival prognosis in patients. Previously, we showed that recombinant SPCA2 prevented TNBC cells from acquiring aggressive ‘mesenchymal’ properties associated with metastasis both in vitro and in vivo. These findings motivated us to search for drugs that turn the SPCA2 gene back on in TNBC cells. In this study, we show that histone deacetylase inhibitors increase SPCA2 levels, activate Ca2+ signaling and convert cancer cells to a less aggressive ‘epithelial’ state. These findings could lead to new treatment options for TNBC.Graphical Abstract


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 279-279
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Shirley Arbizu ◽  
Maria Angelica Miglino ◽  
Susanne Talcott ◽  
Giuliana Noratto

Abstract Objectives To investigate the mechanisms underlying the breast cancer anti-invasive activity of DSC phenolics enriched in anthocyanins (ACN) in vitro and their potential in vivo. Methods 4T1 cells were treated with ACN extracted from DSC concentrate juice (FruitSmart, Grandview, WA) within dose range 20–80 µg cyanidin 3-glucoside equivalent (C3G)/mL to assess reactive oxygen species (ROS) levels using carboxy-H2DFFDA probe and cell viability using the resazurin kit (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. The pilot in vivo study was performed with 4T1 cells orthotopically injected into mammary fat pads of BALB/c mice (Envigo, Houston, TX, USA) (n = 4). After tumor growth, animals were gavaged with ACN (150 mg C3G/kg body weight/day, n = 2) or saline solution (control, n = 2) for one week followed by euthanasia and collection of tumors, lungs, and liver tissues for analyses. Results ACN induced ROS production (up to 5.13-fold of control) and inhibited cell viability by 50% (IC50) at 58.6 µg C3G/mL. The ACN (IC50 dose) treatment downregulated phospho-ERK1/2 and upregulated phospho-p38 proteins, linked to cell growth inhibition and caspase-dependent apoptosis mediated by the increase in cleaved/total caspase-3 protein ratio (∼3-fold of control) and suppression of total PARP (∼0.4-fold of control). ACN also suppressed the Akt/mTOR/CREB pathway that promotes proliferation and invasion. 4T1 cell migration was inhibited by 22%, consistent with the phospho-Src downregulation (down to ∼ 0.25-fold of control), that regulate epithelial-mesenchymal transition. Phospho-ERK1/2 and phospho-CREB were downregulated in mice tumors. This was accompanied by the downregulation of Cenpf mRNA in liver and lungs, which correlates with poor prognosis and metastasis, thus supporting the in vitro findings. Conclusions ACN provides a dietary alternative to fight human breast cancer invasion by incorporating DSC into the diet. More studies are guarantee to help improve the quality of life of breast cancer patients. Funding Sources This work was supported by the Northwest Cherry Growers. The authors thank the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil for providing Ana Carolina Silveira Rabelo the scholarship.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
C Zabkiewicz ◽  
L Ye ◽  
R Hargest

Abstract Introduction HER2 over-expression denotes poor prognosis in breast cancers.Bone morphogenetic protein(BMP) signalling is known to interact with EGF signalling, co-regulating breast cancer progression.BMP antagonist Gremlin-1 may influence breast cancer disease progression, but this remains unexplored in HER2 positive breast cancers. Method GREM1 and HER2 expression, and clinical outcomes were examined in clinical cohorts.GREM1 overexpression or pEF control plasmid were transduced into BT474 HER2+breast cancer cells. In vitro function tests using BT474 pEF and BT474GREM1cells include 2D/3D growth, migration, and expression of epithelial to mesenchymal transition(EMT)markers. Signalling cascades were examined in BT474 treated with RhGremlin-1. In vivo, BALB/c nude mice underwent either mammary injection or intra-cardiac injection of BT474pEF or BT474GREM1 cells and disease burden assessed. Result GREM1 expression correlates with HER2 in breast tumours(p=0.03) and is higher in metastatic HER2 positive cancers (p = 0.04). HER2 positive patients with high GREM1 have poor survival(p = 0.0002). BT474GREM1cells have up-regulated markers of EMT compared to control. BT474 RhGremlin-1 treated cells have active AKT pathway signalling, independent of BMP signalling. In vitro,  BT474GREM1cells significantly proliferate and migrate compared to control(p<0.05 and p < 0.001).This is confirmed in vivo,  BT474GREM1 mice grew significantly larger mammary tumours(p<0.05) and had more PETCT metastatic hotspots. Conclusion Gremlin-1 is correlated with poor outcomes in HER2 patients and promotes breast cancer cellular growth, migration and metastasis.Gremlin-1 is a novel area of research with potential as a prognostic biomarker and therapeutic target for personalised, effective, breast cancer outcomes. Take-home message BMP antagonists are gaining interest for their potential in breast cancer prognosis and therapeutics.This novel area of research shows BMP antagonist Gremlin-1 is of importance in HER2 positive breast cancers. DRAGONS DEN


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nataliia Petruk ◽  
Sanni Tuominen ◽  
Malin Åkerfelt ◽  
Jesse Mattsson ◽  
Jouko Sandholm ◽  
...  

AbstractCD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ya Fan ◽  
Jia Wang ◽  
Wen Jin ◽  
Yifei Sun ◽  
Yuemei Xu ◽  
...  

Abstract Background E3 ubiquitin ligase HRD1 (HMG-CoA reductase degradation protein 1, alias synoviolin with SYVN1 as the official gene symbol) was found downregulated and acting as a tumor suppressor in breast cancer, while the exact expression profile of HRD1 in different breast cancer subtypes remains unknown. Recent studies characterized circular RNAs (circRNAs) playing an regulatory role as miRNA sponge in tumor progression, presenting a new viewpoint for the post-transcriptional regulation of cancer-related genes. Methods Examination of the expression of HRD1 protein and mRNA was implemented using public microarray/RNA-sequencing datasets and breast cancer tissues/cell lines. Based on public RNA-sequencing results, online databases and enrichment/clustering analyses were used to predict the specific combinations of circRNA/miRNA that potentially govern HRD1 expression. Gain-of-function and rescue experiments in vitro and in vivo were executed to evaluate the suppressive effects of circNR3C2 on breast cancer progression through HRD1-mediated proteasomal degradation of Vimentin, which was identified using immunoblotting, immunoprecipitation, and in vitro ubiquitination assays. Results HRD1 is significantly underexpressed in triple-negative breast cancer (TNBC) against other subtypes and has an inverse correlation with Vimentin, inhibiting the proliferation, migration, invasion and EMT (epithelial-mesenchymal transition) process of breast cancer cells via inducing polyubiquitination-mediated proteasomal degradation of Vimentin. CircNR3C2 (hsa_circ_0071127) is also remarkably downregulated in TNBC, negatively correlated with the distant metastasis and lethality of invasive breast carcinoma. Overexpressing circNR3C2 in vitro and in vivo leads to a crucial enhancement of the tumor-suppressive effects of HRD1 through sponging miR-513a-3p. Conclusions Collectively, we elucidated a bona fide circNR3C2/miR-513a-3p/HRD1/Vimentin axis that negatively regulates the metastasis of TNBC, suggesting that circNR3C2 and HRD1 can act as potential prognostic biomarkers. Our study may facilitate the development of therapeutic agents targeting circNR3C2 and HRD1 for patients with aggressive breast cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changhu Lee ◽  
Hyung Won Ryu ◽  
Sahee Kim ◽  
Min Kim ◽  
Sei-Ryang Oh ◽  
...  

AbstractBreast cancer is one of the most common cancers in women and is associated with a high mortality rate. The majority of deaths resulting from breast cancer are attributable to metastatic growth; in addition, chemoresistance is a major concern in the treatment of patients with breast cancer. However, limited drugs are available for the treatment of metastatic breast cancer. In this study, the chemoadjuvant effects of a methanolic extract from the leaves of Pseudolysimachion rotundum var. subintegrum (NC13) and an active component isolated from the plant, verminoside (Vms), were evaluated. Furthermore, their potent anti-metastatic activities were validated in vitro and in vivo in animal models. The anti-metastatic and chemosensitizing activities of NC13 and Vms on cisplatin treatment were found to be partly mediated by suppression of the epithelial–mesenchymal transition of cancer cells. Collectively, our results implied that NC13 and its bioactive component Vms could be developed as effective chemoadjuvants in combination with conventional therapeutics.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1918
Author(s):  
Yanyuan Wu ◽  
Marianna Sarkissyan ◽  
Ochanya Ogah ◽  
Juri Kim ◽  
Jaydutt V. Vadgama

Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with cancer progression. Our study examined the role of MALAT1 in breast cancer and the mechanisms involved in the regulation of MALAT1. Methods: In vitro cell and in vivo animal models were used to examine the role of MALAT1 in breast cancer. The interaction of FOXO1 (Forkhead Box O1) at the promoter region of MALAT1 was investigated by chromatin immunoprecipitation (ChIP) assay. Results: The data shows an elevated expression of MALAT1 in breast cancer tissues and cells compared to non-cancer tissues and cells. The highest level of MALAT1 was observed in metastatic triple-negative breast cancer and trastuzumab-resistant HER2 (human epidermal growth factor receptor 2) overexpressing (HER2+) cells. Knockdown of MALAT1 in trastuzumab-resistant HER2+ cells reversed epithelial to mesenchymal transition-like phenotype and cell invasiveness. It improved the sensitivity of the cell’s response to trastuzumab. Furthermore, activation of Akt by phosphorylation was associated with the upregulation of MALAT1. The transcription factor FOXO1 regulates the expression of MALAT1 via the PI3/Akt pathway. Conclusions: We show that MALAT1 contributes to HER2+ cell resistance to trastuzumab. Targeting the PI3/Akt pathway and stabilizing FOXO1 translocation could inhibit the upregulation of MALAT1.


Sign in / Sign up

Export Citation Format

Share Document