scholarly journals Dark Sweet Cherry (Prunus avium) Anthocyanins Inhibited the Growth and Biomarkers for Breast Cancer Growth and Invasion in Highly Metastatic 4T1 Tumor Cells

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 279-279
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Shirley Arbizu ◽  
Maria Angelica Miglino ◽  
Susanne Talcott ◽  
Giuliana Noratto

Abstract Objectives To investigate the mechanisms underlying the breast cancer anti-invasive activity of DSC phenolics enriched in anthocyanins (ACN) in vitro and their potential in vivo. Methods 4T1 cells were treated with ACN extracted from DSC concentrate juice (FruitSmart, Grandview, WA) within dose range 20–80 µg cyanidin 3-glucoside equivalent (C3G)/mL to assess reactive oxygen species (ROS) levels using carboxy-H2DFFDA probe and cell viability using the resazurin kit (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. The pilot in vivo study was performed with 4T1 cells orthotopically injected into mammary fat pads of BALB/c mice (Envigo, Houston, TX, USA) (n = 4). After tumor growth, animals were gavaged with ACN (150 mg C3G/kg body weight/day, n = 2) or saline solution (control, n = 2) for one week followed by euthanasia and collection of tumors, lungs, and liver tissues for analyses. Results ACN induced ROS production (up to 5.13-fold of control) and inhibited cell viability by 50% (IC50) at 58.6 µg C3G/mL. The ACN (IC50 dose) treatment downregulated phospho-ERK1/2 and upregulated phospho-p38 proteins, linked to cell growth inhibition and caspase-dependent apoptosis mediated by the increase in cleaved/total caspase-3 protein ratio (∼3-fold of control) and suppression of total PARP (∼0.4-fold of control). ACN also suppressed the Akt/mTOR/CREB pathway that promotes proliferation and invasion. 4T1 cell migration was inhibited by 22%, consistent with the phospho-Src downregulation (down to ∼ 0.25-fold of control), that regulate epithelial-mesenchymal transition. Phospho-ERK1/2 and phospho-CREB were downregulated in mice tumors. This was accompanied by the downregulation of Cenpf mRNA in liver and lungs, which correlates with poor prognosis and metastasis, thus supporting the in vitro findings. Conclusions ACN provides a dietary alternative to fight human breast cancer invasion by incorporating DSC into the diet. More studies are guarantee to help improve the quality of life of breast cancer patients. Funding Sources This work was supported by the Northwest Cherry Growers. The authors thank the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil for providing Ana Carolina Silveira Rabelo the scholarship.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nataliia Petruk ◽  
Sanni Tuominen ◽  
Malin Åkerfelt ◽  
Jesse Mattsson ◽  
Jouko Sandholm ◽  
...  

AbstractCD73 is a cell surface ecto-5′-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5′-(α, β-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial–mesenchymal transition.


2021 ◽  
Author(s):  
Mariska Miranda ◽  
Jodi M. Saunus ◽  
Seçkin Akgül ◽  
Mahdi Moradi Marjaneh ◽  
Jamie R. Kutasovic ◽  
...  

AbstractBackgroundThe nucleocytoplasmic shuttling of ERK5 has gained recent attention as a regulator of its diverse roles in cancer progression but the exact mechanisms for this shuttling are still under investigation.MethodsUsing in vitro, in vivo and in silico studies, we investigated the roles of shorter ERK5 isoforms in regulating the nucleocytoplasmic shuttling of active phosphorylated-ERK5 (pERK5). Retrospective cohorts of primary and metastatic breast cancer cases were used to evaluate the association of the subcellular localization of pERK5 with clinicopathological features.ResultsExtranuclear localization of pERK5 was observed during cell migration in vitro and at the invasive fronts of metastatic tumors in vivo. The nuclear and extranuclear cell fractions contained different isoforms of pERK5, which are encoded by splice variants expressed in breast and other cancers in the TCGA data. One isoform, isoform-3, lacks the C-terminal transcriptional domain and the nuclear localization signal. The co-expression of isoform-3 and full-length ERK5 associated with high epithelial-to-mesenchymal transition (EMT) and poor patient survival. Experimentally, expressing isoform-3 with full-length ERK5 in breast cancer cells increased cell migration, drove EMT and led to tamoxifen resistance. In breast cancer patient samples, pERK5 showed variable subcellular localizations where its extranuclear localization associated with aggressive clinicopathological features, metastasis, and poor survival.ConclusionOur studies support a model of ERK5 nucleocytoplasmic shuttling driven by splice variants in an interplay between mesenchymal and epithelial states during metastasis. Using ERK5 as a biomarker and a therapeutic target should account for its splicing and context-dependent biological functions.Graphical AbstractERK5 isoform-3 expression deploys active ERK5 (pERK5) outside the nucleus to facilitate EMT and cell migration. In cells dominantly expressing isoform-1, pERK5 shuttles to the nucleus to drive cell expansion.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changhu Lee ◽  
Hyung Won Ryu ◽  
Sahee Kim ◽  
Min Kim ◽  
Sei-Ryang Oh ◽  
...  

AbstractBreast cancer is one of the most common cancers in women and is associated with a high mortality rate. The majority of deaths resulting from breast cancer are attributable to metastatic growth; in addition, chemoresistance is a major concern in the treatment of patients with breast cancer. However, limited drugs are available for the treatment of metastatic breast cancer. In this study, the chemoadjuvant effects of a methanolic extract from the leaves of Pseudolysimachion rotundum var. subintegrum (NC13) and an active component isolated from the plant, verminoside (Vms), were evaluated. Furthermore, their potent anti-metastatic activities were validated in vitro and in vivo in animal models. The anti-metastatic and chemosensitizing activities of NC13 and Vms on cisplatin treatment were found to be partly mediated by suppression of the epithelial–mesenchymal transition of cancer cells. Collectively, our results implied that NC13 and its bioactive component Vms could be developed as effective chemoadjuvants in combination with conventional therapeutics.


Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 312-319 ◽  
Author(s):  
Can Wei ◽  
Junfeng Jing ◽  
Yanbin Zhang ◽  
Ling Fang

Background: Wogonoside, an effective component of Scutellaria baicalensis extract, has recently become a hot topic for its newly discovered anticancer efficacy, but the underlying pharmacological mechanism is still unclear. In this study, we tested the inhibitory effects of wogonoside in human prostate cancer PC3 cells in vitro and vivo. Methods: The effects of wogonoside on cell viability, cycle progression, invasion, migration, and apoptosis were assessed in vitro. The levels of proteins in related signaling pathways were detected by western blotting assay. Finally, nude mouse tumorigenicity assay was conducted to detect the anticancer effect of wogonoside in vivo. Results: Wogonoside inhibited cell viability, invasive and migratory ability in a time- and dose-dependent manner. Flow cytometry indicated that wogonoside could induce cell apoptosis and S phase cell-cycle arrest. Mechanically, wogonoside suppressed the Wnt/β-catenin signaling pathway, and the level of p-glycogen synthase kinase-3β (GSK-3β; Ser9) was inhibited by wogonoside. The epithelial-mesenchymal transition (EMT) process was also reversed in PC3 cell line after wogonoside treatment. In vivo experiments showed that wogonoside inhibited tumor growth in xenograft mouse models. Conclusion: These findings revealed that wogonoside could suppress Wnt/β-catenin pathway and reversing the EMT process in PC3 cells. GSK-3β acts as a tumor suppressor in prostate cancer. Wogonoside may serve as an effective agent for treating prostate cancer.


2021 ◽  
Vol 5 (2) ◽  
pp. e202101261
Author(s):  
Simon Grelet ◽  
Cécile Fréreux ◽  
Clémence Obellianne ◽  
Ken Noguchi ◽  
Breege V Howley ◽  
...  

Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer.


2019 ◽  
Vol 166 (6) ◽  
pp. 485-493 ◽  
Author(s):  
Anyun Mao ◽  
Maojian Chen ◽  
Qinghong Qin ◽  
Zhijie Liang ◽  
Wei Jiang ◽  
...  

Abstract It has been generally confirmed that zinc finger and BTB domain containing 7A (ZBTB7A) plays an important role in the occurrence and progression of malignant tumours, but the promotion or inhibition effect is related to tumour type. The mechanism between ZBTB7A and breast cancer is not well understood, so further research is needed. In this study, we first investigated the expression of ZBTB7A in tissue samples of clinical breast cancer patients, MDA-MB-231, MCF-7 and MCF-10A cells. Second, we overexpressed the ZBTB7A in MCF-7 cells and silenced the ZBTB7A in MDA-MB-231 cells using lentivirus transfection technology, respectively, and verified the effect of ZBTB7A on migration and invasion of breast cancer cell lines through in vitro cell function experiments, such as wound-healing assay, migration and invasion assay, quantitative real time reverse transcriptase (qRT-PCR) and western blot. Then, the correlation between the above influences, epithelial–mesenchymal transition (EMT) and NF-κB was analysed. Finally, in vivo tumour transplantation model in nude mice was established to verified the effect of ZBTB7A on metastasis of breast cancer MDA-MB-231 cells. In conclusion, ZBTB7A is highly expressed in cancer tissue, breast cancer cell line MDA-MB-231 and MCF-7. Meanwhile, the high expression of ZBTB7A may promote cell migration, invasion and tumour metastasis, which may be related to EMT events by regulating NF-κB.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yu-Mei Liao ◽  
Ya-Hui Wang ◽  
Jung-Tung Hung ◽  
Yu-Ju Lin ◽  
Yen-Lin Huang ◽  
...  

Abstract Background Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. β1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. Methods Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan–Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. Results Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of β-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. Conclusion Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 278-278
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Maria Angelica Miglino ◽  
Shirley Arbizu ◽  
Susanne Talcott ◽  
Ana Cláudia Carreira ◽  
...  

Abstract Objectives To investigate the mechanisms underlying the anticancer activity of Calotropis procera crude phenolics extract (CphE). Methods CphE were obtained from leaves homogenized with ethanol (1g:150 mL), followed by filtration and evaporation using a rotary evaporator. Quercetin was used as a positive control since is one of the major flavonoids in C. procera. 4T1 cells were treated with CphE (31–500 µg gallic acid equivalent (GAE)/mL), quercetin (Q) (0.6–3 µg/mL) or DMSO (control) to assess cell viability using resazurin kit and reactive oxygen species (ROS) using the Carboxy-H2DFFDA probe (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. Results 4T1 cell viability was inhibited by CphE (within 31–125 µg GAE/mL) and Q (0.6–3 µg/mL) in a dose-dependent manner, with IC50 = 49.6 µg GAE/mL and 1,75 µg/mL, respectively. However, ROS levels were decreased in cells treated with CphE (down to 0.7-fold of control) while Q induced ROS (up to 1.5-fold of control). These results suggest a contrasting response from 4T1 breast cancer cells to individual phenolics present in CphE. The CphE-induced caspase and PARP-dependent apoptosis and cell viability suppression were mediated by CphE-mediated oxidative stress reduction consistent with phospho-ERK1/2 downregulation (down to 0.4-fold of control). Conversely, Q apoptotic and cell viability suppression mechanisms are mediated by induction of ROS-phospho-ERK1/2 (up to 1.6-fold of control) axis. The Akt/mTOR/CREB pathway was downregulated at a similar extend by CphE and Q, consistent with cell migration (suppressed by 40% and 20% by CphE and Q, respectively) and with protein levels of phospho-Src (downregulated to ∼ 0.2-fold and 0.4-fold of control) and phospho-CREB (0.7-fold and 0.6-fold of control) by CphE and Q, respectively. Conclusions CphE inhibited cell viability, induced apoptosis and reduced cell migration. These effects were the result of the modulation of proteins that play an important role in epithelial-mesenchymal transition and cell invasion. These findings provide new insights into the anti-cancer mechanisms of C. procera as a promising herb used in folk medicine for breast cancer treatment. Funding Sources Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Universidade de São Paulo (USP).


Sign in / Sign up

Export Citation Format

Share Document