scholarly journals Innate triggering and antiviral effector functions of activin A

2021 ◽  
Author(s):  
Kinda Al-Hourani ◽  
Narayan Ramamurthy ◽  
Emanuele Marchi ◽  
Ruth M Eichinger ◽  
Lian N Lee ◽  
...  

First-line defence against viral infection is contingent upon rapid detection of conserved viral structural and genomic motifs by germline-encoded pattern recognition receptors, followed by activation of the type I IFN system and establishment of an intracellular antiviral state. Novel antiviral functions of bone morphogenetic protein and related activin cytokines, acting in conjunction with, and independently of, type I IFN, have recently been described. Activin A mediates multiple innate and adaptive immune functions, including antiviral effects. However, how such effects are mediated and how activin might be triggered by viral infection have not been defined. Here we addressed this in vivo and in vitro, in humans and mice. Transcriptomic analyses delineated strikingly congruent patterns of gene regulation in hepatocytes stimulated with recombinant activin A and IFNα in vitro. Activin A mRNA, encoded by INHBA, is induced upon activation of RIG-I, MDA5 and TLR7/8 viral nucleic acid sensors in vitro, across multiple cell lines and in human peripheral blood mononuclear cells. In vivo, infection of mice with influenza A also upregulated Inhba mRNA in the lung; this local upregulation of Inhba is retained in MAVS knockout mice, indicating a role for non-RIG-I-like receptors in its induction. Activin induction and signalling were also detectable in patients with chronic viral hepatitis. Together, these data suggest Activin A is triggered in parallel with type I IFN responses and can trigger related antiviral effector functions. This model has implications for the development of targeted antiviral therapies, in addition to revealing novel facets of activin biology.

2012 ◽  
Vol 209 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Stefanie Jöckel ◽  
Gernot Nees ◽  
Romy Sommer ◽  
Yang Zhao ◽  
Dmitry Cherkasov ◽  
...  

Foreign RNA serves as pathogen-associated molecular pattern (PAMP) and is a potent immune stimulator for innate immune receptors. However, the role of single bacterial RNA species in immune activation has not been characterized in detail. We analyzed the immunostimulatory potential of transfer RNA (tRNA) from different bacteria. Interestingly, bacterial tRNA induced type I interferon (IFN) and inflammatory cytokines in mouse dendritic cells (DCs) and human peripheral blood mononuclear cells (PBMCs). Cytokine production was TLR7 dependent because TLR7-deficient mouse DCs did not respond and TLR7 inhibitory oligonucleotides inhibited tRNA-mediated activation. However, not all bacterial tRNA induced IFN-α because tRNA from Escherichia coli Nissle 1917 and Thermus thermophilus were non-immunostimulatory. Of note, tRNA from an E. coli knockout strain for tRNA (Gm18)-2′-O-methyltransferase (trmH) regained immunostimulatory potential. Additionally, in vitro methylation of this immunostimulatory Gm18-negative tRNA with recombinant trmH from T. thermophilus abolished its IFN-α inducing potential. More importantly, Gm18-modified tRNA acted as TLR7 antagonist and blocked IFN-α induction of influenza A virus–infected PBMCs.


2020 ◽  
Vol 117 (38) ◽  
pp. 23695-23706 ◽  
Author(s):  
Wei Liu ◽  
Ziqiao Wang ◽  
Lun Liu ◽  
Zongheng Yang ◽  
Shuo Liu ◽  
...  

Long noncoding RNAs (lncRNAs) involved in the regulation of antiviral innate immune responses need to be further identified. By functionally screening the lncRNAs in macrophages, here we identified lncRNAMalat1, abundant in the nucleus but significantly down-regulated after viral infection, as a negative regulator of antiviral type I IFN (IFN-I) production.Malat1directly bound to the transactive response DNA-binding protein (TDP43) in the nucleus and prevented activation of TDP43 by blocking the activated caspase-3-mediated TDP43 cleavage to TDP35. The cleaved TDP35 increased the nuclear IRF3 protein level by binding and degradingRbck1pre-mRNA to prevent IRF3 proteasomal degradation upon viral infection, thus selectively promoting antiviral IFN-I production. Deficiency ofMalat1enhanced antiviral innate responses in vivo, accompanying the increased IFN-I production and reduced viral burden. Importantly, the reducedMALAT1, augmented IRF3, and increasedIFNAmRNA were found in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients. Therefore, the down-regulation ofMALAT1in virus-infected cells or in human cells from autoimmune diseases will increase host resistance against viral infection or lead to autoinflammatory interferonopathies via the increased type I IFN production. Our results demonstrate that the nuclearMalat1suppresses antiviral innate responses by targeting TDP43 activation via RNA-RBP interactive network, adding insight to the molecular regulation of innate responses and autoimmune pathogenesis.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (> or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Fangyi Zhang ◽  
Xuefeng Lin ◽  
Xiaodong Yang ◽  
Guangjian Lu ◽  
Qunmei Zhang ◽  
...  

Abstract Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


1998 ◽  
Vol 72 (4) ◽  
pp. 2881-2889 ◽  
Author(s):  
M. V. Borca ◽  
C. Carrillo ◽  
L. Zsak ◽  
W. W. Laegreid ◽  
G. F. Kutish ◽  
...  

ABSTRACT An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo,8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yuyi Huang ◽  
Yujie Wang ◽  
Shuhui Meng ◽  
Zhuohang Chen ◽  
Haifan Kong ◽  
...  

Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.


2018 ◽  
Vol 23 (6) ◽  
pp. 509-517 ◽  
Author(s):  
Anna J. Boland ◽  
Nisha Gangadharan ◽  
Pierce Kavanagh ◽  
Linda Hemeryck ◽  
Jennifer Kieran ◽  
...  

Statins are mainstream therapy in the treatment and prevention of cardiovascular disease through inhibitory effects on cholesterol synthesis. However, statins’ beneficial effects in cardiovascular disease may also be attributable to their role as anti-inflammatory mediators. Here, we investigated the effects of simvastatin treatment on expression levels of interleukin (IL) 1β in both patient with hyperlipidemia and healthy human peripheral blood mononuclear cells (PBMCs) using cholesterol crystals (CC), a cardiovascular pathogenic stimulus for activation of the NOD-like receptor pyrin domain–containing protein 3 (NLRP3) inflammasome. Cholesterol crystal-induced NLRP3 inflammasome activation was used to trigger maturation and release of IL-1β in PBMCs. Specifically, isolated PBMCs from patients with hyperlipidemia at baseline and following 8 weeks of in vivo treatment with simvastatin (10-20 mg) daily were stimulated with lipopolysaccharide (LPS; 100 ng/mL) for 3 hours to induce proIL-Iβ expression followed by CC (2 mg/mL) stimulation for further 18 hours to activate the NLRP3 inflammasome complex to induce maturation/activation of IL-1β. Peripheral blood mononuclear cells were also isolated from healthy donors and stimulated in vitro with simvastatin (50, 25, 5, and 2 µmol/L) prior to stimulation with LPS and CC as described above. The effects of simvastatin treatment on levels of IL-1β expression were determined by enzyme-linked immunosorbent assay and western blot. Both in vitro and in vivo treatments with simvastatin led to a significant reduction in the levels of expression of IL-1β in response to stimulation with CC. Simvastatin inhibits the expression and activation of IL-1β induced by CC in PBMCs, which may contribute to its protective role in patients with cardiovascular disease.


Pteridines ◽  
2013 ◽  
Vol 24 (3) ◽  
pp. 237-243
Author(s):  
Sebastian Schroecksnadel ◽  
Elena-Sophia Ledjeff ◽  
Johanna Gostner ◽  
Christiana Winkler ◽  
Katharina Kurz ◽  
...  

AbstractIn vitro, large amounts of neopterin are released from human monocyte-derived macrophages and dendritic cells primarily upon stimulation with Th1-type cytokine interferon-γ (IFN-γ). IFN-γ also induces the enzyme indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (TRP) to form kynurenine (KYN). IDO-mediated TRP catabolism is very effective in suppressing the proliferation of T lymphocytes as well as of pathogens in vitro and in vivo. In this study, we investigated whether exogenously added neopterin may influence IDO activity in resting and in stimulated peripheral blood mononuclear cells (PBMC). PBMC were isolated from healthy donors, and neopterin was added in a concentration range from 0.01 to 50 μmol/L. After 30 min, PBMC were stimulated or not with 10 μg/mL of mitogen phytohemagglutinin (PHA). After 48 h, culture supernatants were collected, KYN and TRP concentrations were measured by high-performance liquid chromatography, and the ratio of KYN vs. TRP was calculated as an estimate of IDO activity. Spontaneous as well as PHA-induced TRP breakdown was suppressed by exogenously added neopterin in a dose-dependent way; the lowest active concentration of neopterin was <100 nmol/L. As neopterin concentrations in the nanomolar range are commonly observed in patients suffering from infections, sepsis, or uremia, our results suggest that neopterin formation might also serve as a feedback mechanism to slow down TRP degradation in vivo.


Sign in / Sign up

Export Citation Format

Share Document