scholarly journals Proteasome homeostasis is essential for a robust cauliflower mosaic virus infection

2021 ◽  
Author(s):  
Aayushi Shukla ◽  
Suayib Ustun ◽  
Anders Hafrén

SummaryThe ubiquitin-proteasome system (UPS) is essential for the maintenance and shifts in protein homeostasis, and thereby forms a founding pillar in virtually all cellular processes including plant immunity and viral infections. According to its importance in fine-tuning the complex plant immune response, proteasomal defects result in divergent outcomes including both resistance and susceptibility phenotypes in response to viruses. The final outcome will largely depend on the specific virus and its specific co-adaptation with the UPS as well as the immune system. Here, we show that cauliflower mosaic virus (CaMV) relies on the proteasome for robust infection. The proteasome system is induced during infection via SA and supports systemic accumulation of the virus as well as plant growth performance during infection. This establishes the UPS as a win-win pathway for the plant and the virus, and together with our demonstration of a proteasome-suppressing viral effector, the intimacy between the proteasome and CaMV is fortified.

2020 ◽  
Vol 8 (9) ◽  
pp. 1424
Author(s):  
Hye-Ra Lee ◽  
Myoung Kyu Lee ◽  
Chan Woo Kim ◽  
Meehyein Kim

The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1929
Author(s):  
Eva M. Huber ◽  
Michael Groll

At the heart of the ubiquitin–proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryosuke Hayama ◽  
Peizhen Yang ◽  
Federico Valverde ◽  
Tsuyoshi Mizoguchi ◽  
Ikuyo Furutani-Hayama ◽  
...  

AbstractProtein ubiquitylation participates in a number of essential cellular processes including signal transduction and transcription, often by initiating the degradation of specific substrates through the 26S proteasome. Within the ubiquitin-proteasome system, deubiquitylating enzymes (DUBs) not only help generate and maintain the supply of free ubiquitin monomers, they also directly control functions and activities of specific target proteins by modulating the pool of ubiquitylated species. Ubiquitin carboxyl-terminal hydrolases (UCHs) belong to an enzymatic subclass of DUBs, and are represented by three members in Arabidopsis, UCH1, UCH2 and UCH3. UCH1 and UCH2 influence auxin-dependent developmental pathways in Arabidopsis through their deubiquitylation activities, whereas biological and enzymatic functions of UCH3 remain unclear. Here, we demonstrate that Arabidopsis UCH3 acts to maintain the period of the circadian clock at high temperatures redundantly with UCH1 and UCH2. Whereas single uch1, uch2 and uch3 mutants have weak circadian phenotypes, the triple uch mutant displays a drastic lengthening of period at high temperatures that is more extreme than the uch1 uch2 double mutant. UCH3 also possesses a broad deubiquitylation activity against a range of substrates that link ubiquitin via peptide and isopeptide linkages. While the protein target(s) of UCH1-3 are not yet known, we propose that these DUBs act on one or more factors that control period length of the circadian clock through removal of their bound ubiquitin moieties, thus ensuring that the clock oscillates with a proper period even at elevated temperatures.


2007 ◽  
Vol 177 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Megan L. Landsverk ◽  
Shumin Li ◽  
Alex H. Hutagalung ◽  
Ayaz Najafov ◽  
Thorsten Hoppe ◽  
...  

Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45–related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.


2007 ◽  
Vol 20 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Daisuke Hondo ◽  
Shu Hase ◽  
Yoshinori Kanayama ◽  
Nobuyuki Yoshikawa ◽  
Shigehito Takenaka ◽  
...  

The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jai1-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jai1-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jai1-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants.


2005 ◽  
Vol 41 ◽  
pp. 113-128 ◽  
Author(s):  
Florian A. Salomons ◽  
Lisette G.G.C. Verhoef ◽  
Nico P. Dantuma

Regulated turnover of proteins in the cytosol and nucleus of eukaryotic cells is primarily performed by the ubiquitin–proteasome system (UPS). The UPS is involved in many essential cellular processes. Alterations in this proteolytic system are associated with a variety of human pathologies, such as neurodegenerative diseases, cancer, immunological disorders and inflammation. The precise role of the UPS in the pathophysiology of these diseases, however, remains poorly understood. Detection of UPS aberrations has been a major challenge because of the complexity of the system. Most studies focus on various aspects of the UPS, such as substrate recognition, ubiquitination, deubiquitination or proteasome activity, and do not provide a complete picture of the UPS as an integral system. To monitor the efficacy of the UPS, a number of reporter substrates have been developed based on fluorescent proteins, such as the green fluorescent protein and its spectral variants. These fluorescent UPS reporters contain specific degradation signals that target them with high efficiency and accuracy for proteasomal degradation. Several studies have shown that these reporters can probe the functionality of the UPS in cellular and animal models and provide us with important information on the status of the UPS under various conditions. Moreover, these reporters can aid the identification and development of novel anti-cancer and anti-inflammatory drugs based on UPS inhibition.


Hematology ◽  
2006 ◽  
Vol 2006 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Aaron Ciechanover

AbstractBetween the 1950s and 1980s, scientists were focusing mostly on how the genetic code is transcribed to RNA and translated to proteins, but how proteins are degraded has remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis is largely non-lysosomal, but the mechanisms involved remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs.


Sign in / Sign up

Export Citation Format

Share Document