scholarly journals A UVB-responsive common variant at chr7p21.1 confers tanning response and melanoma risk via regulation of the aryl hydrocarbon receptor gene (AHR)

2021 ◽  
Author(s):  
Mai Xu ◽  
Lindsey Mehl ◽  
Tongwu Zhang ◽  
Rohit Thakur ◽  
Hayley Sowards ◽  
...  

AbstractGenome-wide association studies have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP, and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). As ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWAS identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor gene (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. As AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus, and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression, and altering melanocyte growth phenotypes upon exposure.

Author(s):  
Niccolo’ Tesi ◽  
Sven J van der Lee ◽  
Marc Hulsman ◽  
Iris E Jansen ◽  
Najada Stringa ◽  
...  

Abstract Studying the genome of centenarians may give insights into the molecular mechanisms underlying extreme human longevity and the escape of age-related diseases. Here, we set out to construct polygenic risk scores (PRSs) for longevity and to investigate the functions of longevity-associated variants. Using a cohort of centenarians with maintained cognitive health (N = 343), a population-matched cohort of older adults from 5 cohorts (N = 2905), and summary statistics data from genome-wide association studies on parental longevity, we constructed a PRS including 330 variants that significantly discriminated between centenarians and older adults. This PRS was also associated with longer survival in an independent sample of younger individuals (p = .02), leading up to a 4-year difference in survival based on common genetic factors only. We show that this PRS was, in part, able to compensate for the deleterious effect of the APOE-ε4 allele. Using an integrative framework, we annotated the 330 variants included in this PRS by the genes they associate with. We find that they are enriched with genes associated with cellular differentiation, developmental processes, and cellular response to stress. Together, our results indicate that an extended human life span is, in part, the result of a constellation of variants each exerting small advantageous effects on aging-related biological mechanisms that maintain overall health and decrease the risk of age-related diseases.


2015 ◽  
Vol 81 (1) ◽  
pp. T275-T281 ◽  
Author(s):  
Wageh S. Darwish ◽  
Yoshinori Ikenaka ◽  
Shouta M. M. Nakayama ◽  
Hazuki Mizukawa ◽  
Mayumi Ishizuka

2011 ◽  
Vol 122 (2) ◽  
pp. 415-421 ◽  
Author(s):  
Aihua Gu ◽  
Guixiang Ji ◽  
Yan Long ◽  
Yong Zhou ◽  
Xiangguo Shi ◽  
...  

Lung Cancer ◽  
2007 ◽  
Vol 56 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Jin Hee Kim ◽  
Heon Kim ◽  
Kye Young Lee ◽  
Jong-Won Kang ◽  
Kwan-Hee Lee ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1815-1822 ◽  
Author(s):  
Nadia Solovieff ◽  
Jacqueline N. Milton ◽  
Stephen W. Hartley ◽  
Richard Sherva ◽  
Paola Sebastiani ◽  
...  

Abstract In a genome-wide association study of 848 blacks with sickle cell anemia, we identified single nucleotide polymorphisms (SNPs) associated with fetal hemoglobin concentration. The most significant SNPs in a discovery sample were tested in a replication set of 305 blacks with sickle cell anemia and in subjects with hemoglobin E or β thalassemia trait from Thailand and Hong Kong. A novel region on chromosome 11 containing olfactory receptor genes OR51B5 and OR51B6 was identified by 6 SNPs (lowest P = 4.7E−08) and validated in the replication set. An additional olfactory receptor gene, OR51B2, was identified by a novel SNP set enrichment analysis. Genome-wide association studies also validated a previously identified SNP (rs766432) in BCL11A, a gene known to affect fetal hemoglobin levels (P = 2.6E−21) and in Thailand and Hong Kong subjects. Elements within the olfactory receptor gene cluster might play a regulatory role in γ-globin gene expression.


Sign in / Sign up

Export Citation Format

Share Document