scholarly journals Insights into the acquisition of the pks island and production of colibactin in the Escherichia coli population

2021 ◽  
Author(s):  
Frederic Auvray ◽  
Alexandre Perrat ◽  
Yoko Arimizu ◽  
Camille V Chagneau ◽  
Nadege Bossuet-Greif ◽  
...  

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from the phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (ST) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amount of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.

2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Frédéric Auvray ◽  
Alexandre Perrat ◽  
Yoko Arimizu ◽  
Camille V. Chagneau ◽  
Nadège Bossuet-Greif ◽  
...  

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Jingchao Chen ◽  
Yi Li ◽  
Kun Zhang ◽  
Hailei Wang

ABSTRACT The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5α, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5α strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli .


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1504
Author(s):  
Frederick Adzitey ◽  
Jonathan Asante ◽  
Hezekiel M. Kumalo ◽  
Rene B. Khan ◽  
Anou M. Somboro ◽  
...  

Escherichia coli are among the most common foodborne pathogens associated with infections reported from meat sources. This study investigated the virulome, pathogenicity, stress response factors, clonal lineages, and the phylogenomic relationship of E. coli isolated from different meat sources in Ghana using whole-genome sequencing. Isolates were screened from five meat sources (beef, chevon, guinea fowl, local chicken, and mutton) and five areas (Aboabo, Central market, Nyorni, Victory cinema, and Tishegu) based in the Tamale Metropolis, Ghana. Following microbial identification, the E. coli strains were subjected to whole-genome sequencing. Comparative visualisation analyses showed different DNA synteny of the strains. The isolates consisted of diverse sequence types (STs) with the most common being ST155 (n = 3/14). Based Upon Related Sequence Types (eBURST) analyses of the study sequence types identified four similar clones, five single-locus variants, and two satellite clones (more distantly) with global curated E. coli STs. All the isolates possessed at least one restriction-modification (R-M) and CRISPR defence system. Further analysis revealed conserved stress response mechanisms (detoxification, osmotic, oxidative, and periplasmic stress) in the strains. Estimation of pathogenicity predicted a higher average probability score (Pscore ≈ 0.937), supporting their pathogenic potential to humans. Diverse virulence genes that were clonal-specific were identified. Phylogenomic tree analyses coupled with metadata insights depicted the high genetic diversity of the E. coli isolates with no correlation with their meat sources and areas. The findings of this bioinformatic analyses further our understanding of E. coli in meat sources and are broadly relevant to the design of contamination control strategies in meat retail settings in Ghana.


2017 ◽  
Vol 22 (16) ◽  
Author(s):  
Marta Corbella ◽  
Bianca Mariani ◽  
Carolina Ferrari ◽  
Francesco Comandatore ◽  
Erika Scaltriti ◽  
...  

We describe three cases of bloodstream infection caused by colistin-resistant Escherichia coli in patients in a tertiary hospital in Italy, between August 2016 and January 2017. Whole genome sequencing detected the mcr-1 gene in three isolated strains belonging to different sequence types (STs). This occurrence of three cases with mcr-1-positive E. coli belonging to different STs in six months suggests a widespread problem in settings where high multidrug resistance is endemic such as in Italy.


2018 ◽  
Vol 6 (27) ◽  
Author(s):  
Yen-Te Liao ◽  
Fang Liu ◽  
Xincheng Sun ◽  
Robert W. Li ◽  
Vivian C. H. Wu

We report here the whole-genome sequence of a novel Escherichia coli phage, vB_EcoS Sa179lw, isolated from surface water collected in a produce-growing area. With the presence of a putative eae-like gene that was associated with previous non-O157 Shiga toxin-producing E. coli outbreaks, this phage is a candidate for the study of virulence gene transfer.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Ling-Han Kong ◽  
Chang-Wei Lei ◽  
Su-Zhen Ma ◽  
Wei Jiang ◽  
Bi-Hui Liu ◽  
...  

ABSTRACT Sixteen different sequence types (STs) of Escherichia coli isolates from a commercial swine farm in China were confirmed to coharbor the carbapenem resistance gene bla NDM-5 and the colistin resistance gene mcr-1. Whole-genome sequencing revealed that bla NDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a 32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low fitness cost, which might explain the presence of various STs of E. coli coharboring bla NDM-5 and mcr-1.


2019 ◽  
Vol 8 (42) ◽  
Author(s):  
Gaylen A. Uhlich ◽  
George C. Paoli ◽  
Xinmin Zhang ◽  
Elisa Andreozzi

Escherichia coli serotype O157:H7 strain ATCC 43888 is a Shiga toxin-deficient human fecal isolate. Due to its reduced toxicity and its availability from a curated culture collection, the strain has been used extensively in applied research studies. Here, we report the Illumina-corrected PacBio whole-genome sequence of E. coli O157:H7 strain ATCC 43888.


Sign in / Sign up

Export Citation Format

Share Document