scholarly journals Daily rhythms in the transcriptomes of the human parasite Schistosoma mansoni

2021 ◽  
Author(s):  
Kate A. Rawlinson ◽  
Adam J. Reid ◽  
Zhigang Lu ◽  
Patrick Driguez ◽  
Anna Wawer ◽  
...  

AbstractThe consequences of the earth’s daily rotation have led to 24-hour biological rhythms in most organisms. Parasites have daily rhythms, which, when in synchrony with host rhythms, optimize their fitness. Using round-the-clock transcriptomics of male and female Schistosoma mansoni blood flukes we have discovered the first 24-hour molecular oscillations in a metazoan parasite, and gained insight into its daily rhythms. We show that expression of ∼2% of its genes followed diel cycles. Rhythmic processes, in synchrony in both sexes, included a night-time stress response and a day-time metabolic ‘rush hour’. These 24hr rhythms may be driven by host rhythms and/or generated by an intrinsic circadian clock. However, canonical core clock genes are lacking, suggesting an unusual oscillatory mechanism or loss of a functional clock. The daily rhythms in biology identified here, may promote within-host survival and between-host transmission, and are important for the development and delivery of therapeutics against schistosomiasis.

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kate A. Rawlinson ◽  
Adam J. Reid ◽  
Zhigang Lu ◽  
Patrick Driguez ◽  
Anna Wawer ◽  
...  

Abstract Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evan S. Littleton ◽  
Madison L. Childress ◽  
Michaela L. Gosting ◽  
Ayana N. Jackson ◽  
Shihoko Kojima

AbstractCell-autonomous circadian system, consisting of core clock genes, generates near 24-h rhythms and regulates the downstream rhythmic gene expression. While it has become clear that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly available and identify the critical component(s) involved in creating this variation. We found that the relative amplitude of 13 genes and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study provides insight into how the variation in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome output.


2021 ◽  
Vol 74 (7) ◽  
pp. 1750-1753
Author(s):  
Kateryna A. Tarianyk ◽  
Nataliya V. Lytvynenko ◽  
Anastasiia D. Shkodina ◽  
Igor P. Kaidashev

The paper is aimed at the analysis of the role of the circadian regulation of ghrelin levels in patients with Parkinson’s disease. Based on the literature data, patients with Parkinson’s disease have clinical fluctuations in the symptoms of the disease, manifested by the diurnal changes in motor activity, autonomic functions, sleep-wake cycle, visual function, and the efficacy of dopaminergic therapy. Biological rhythms are controlled by central and peripheral oscillators which links with dopaminergic neurotransmission – core of the pathogenesis of Parkinson`s disease. Circadian system is altered in Parkinson`s disease due to that ghrelin fluctuations may be changed. Ghrelin is potential food-entrainable oscillator because it is linked with clock genes expression. In Parkinson`s disease this hormone may induce eating behavior changing and as a result metabolic disorder. The “hunger hormone” ghrelin can be a biomarker of the Parkinson’s disease, and the study of its role in the pathogenesis, as well as its dependence on the period of the day, intake of levodopa medications to improve the effectiveness of treatment is promising.


2013 ◽  
Vol 9 ◽  
pp. 1907-1916 ◽  
Author(s):  
Catrin Goeschen ◽  
Uta Wille

Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions.


2020 ◽  
Vol 117 (35) ◽  
pp. 21609-21617
Author(s):  
Zhenxing Liu ◽  
Christopher P. Selby ◽  
Yanyan Yang ◽  
Laura A. Lindsey-Boltz ◽  
Xuemei Cao ◽  
...  

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among theseMychas been the focus of several studies which have investigated the effect of clock genes and proteins onMyctranscription and MYC protein stability. Other studies have focused on effects ofMycmutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genesBmal1,Cry1,andCry2to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of bothCry1andCry2, which abolishes the negative arm of the clock transcription–translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation ofBmal1,which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption–cancer connection.


2013 ◽  
Vol 280 (1765) ◽  
pp. 20130433 ◽  
Author(s):  
Roelof A. Hut ◽  
Silvia Paolucci ◽  
Roi Dor ◽  
Charalambos P. Kyriacou ◽  
Serge Daan

Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.


Sign in / Sign up

Export Citation Format

Share Document