scholarly journals Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity

2021 ◽  
Author(s):  
Shaolei Xiong ◽  
Wei Wang ◽  
Alexander Kenzior ◽  
Luke Olsen ◽  
Jaya Krishnan ◽  
...  

AbstractNutrient availability varies seasonally and spatially in the wild. The resulting nutrient limitation or restricted access to nutrients pose a major challenge for every organism. While many animals, such as hibernating animals, evolved strategies to overcome periods of nutrient scarcity, the cellular mechanisms of these strategies are poorly understood. Cave environments represent an extreme example of nutrient deprived environments since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability. Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave adapted cavefish populations to study the genetic adaptation to nutrient limitations. We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue. Moreover, the lipid metabolism regulator, Peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin Immunoprecipitation sequencing (ChIP seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish. Finally, we identified two possible regulatory mechanisms of Pparγ in cavefish: higher amounts of ligands of the nuclear receptor, and nonsense mutations in per2, a known repressor of Pparγ. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient limited environments.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sae-Rom Yoo ◽  
Chang-Seob Seo ◽  
Hyeun-Kyoo Shin ◽  
Soo-Jin Jeong

Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells.Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors.Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase.Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 143-155 ◽  
Author(s):  
LeBris S. Quinn ◽  
Barbara G. Anderson ◽  
Jennifer D. Conner ◽  
Tami Wolden-Hanson ◽  
Taylor J. Marcell

Physical exercise induces transient upregulation of the pro-oxidative mediators peroxisome proliferator-activated receptor-δ (PPARδ), silent information regulator of transcription (sirtuin)-1 (SIRT1), PPARγ coactivator 1α (PGC-1α), and PGC-1β in skeletal muscle. To determine the role of the cytokine IL-15 in acute postexercise induction of these molecules, expression of these factors after a bout of exhaustive treadmill running was examined in the gastrocnemius muscle of untrained control and IL-15–knockout (KO) mice. Circulating IL-15 levels increased transiently in control mice after exercise. Control mice, but not IL-15–KO mice, upregulated muscle PPARδ and SIRT1 protein after exercise, accompanied by a complex pattern of mRNA expression for these factors. However, in exhaustive exercise, control mice ran significantly longer than IL-15–KO mice. Therefore, in a second experiment, mice were limited to a 20-minute run, after which a similar pattern of induction of muscle PPARδ and SIRT1 protein by control mice only was observed. In a separate experiment, IL-15–KO mice injected systemically with recombinant IL-15 upregulated muscle PPARδ and SIRT1 mRNA within 30 minutes and also exhibited increased muscle PPARδ protein levels by 3 hours. After exercise, both control and IL-15–KO mice downregulated IL-15 receptor-α (IL-15Rα) mRNA, whereas IL-15Rα–deficient mice exhibited constitutively elevated circulating IL-15 levels. These observations indicate IL-15 release after exercise is necessary for induction of PPARδ and SIRT1 at the protein level in muscle tissue and suggest that exercise releases IL-15 normally sequestered by the IL-15Rα in the resting state. These findings could be used to develop an IL-15–based strategy to induce many of the metabolic benefits of physical exercise.


2013 ◽  
Vol 304 (12) ◽  
pp. E1348-E1358 ◽  
Author(s):  
Pawel Dobrzyn ◽  
Aleksandra Pyrkowska ◽  
Monika K. Duda ◽  
Tomasz Bednarski ◽  
Michal Maczewski ◽  
...  

Cardiac hypertrophy is accompanied by molecular remodeling that affects different cellular pathways, including fatty acid (FA) utilization. In the present study, we show that cardiac lipid metabolism is differentially regulated in response to physiological (endurance training) and pathological [abdominal aortic banding (AAB)] hypertrophic stimuli. Physiological hypertrophy was accompanied by an increased expression of lipogenic genes and the activation of sterol regulatory element-binding protein-1c and Akt signaling. Additionally, FA oxidation pathways regulated by AMP-activated protein kinase (AMPK) and peroxisome proliferator activated receptor-α (PPARα) were induced in trained hearts. Cardiac lipid content was not changed by physiological stimulation, underlining balanced lipid utilization in the trained heart. Moreover, pathological hypertrophy induced the AMPK-regulated oxidative pathway, whereas PPARα and expression of its downstream targets, i.e., acyl-CoA oxidase and carnitine palmitoyltransferase I, were not affected by AAB. In contrast, pathological hypertrophy leads to cardiac triglyceride (TG) and diacylglycerol (DAG) accumulation, although the expression of lipogenic genes and the levels of FA transport proteins (CD36 and FATP) were not changed or reduced compared with the sham group. A possible explanation for this phenomenon is a decrease in lipolysis, as evidenced by the increased content of adipose triglyceride lipase inhibitor G0S2, the increased phosphorylation of hormone-sensitive lipase at Ser565, and the decreased protein levels of DAG lipase that attenuate TG and DAG contents. The increased TG and DAG accumulation observed in AAB-induced hypertrophy might have lipotoxic effects, thereby predisposing to cardiomyopathy and heart failure in the future.


2017 ◽  
Vol 58 (2) ◽  
pp. 57-66 ◽  
Author(s):  
Rose Kohlie ◽  
Nina Perwitz ◽  
Julia Resch ◽  
Sebastian M Schmid ◽  
Hendrik Lehnert ◽  
...  

Brown adipose tissue (BAT) is key to energy homeostasis. By virtue of its thermogenic potential, it may dissipate excessive energy, regulate body weight and increase insulin sensitivity. Catecholamines are critically involved in the regulation of BAT thermogenesis, yet research has focussed on the effects of noradrenaline and adrenaline. Some evidence suggests a role of dopamine (DA) in BAT thermogenesis, but the cellular mechanisms involved have not been addressed. We employed our extensively characterised murine brown adipocyte cells. D1-like and D2-like receptors were detectable at the protein level. Stimulation with DA caused an increase in cAMP concentrations. Oxygen consumption rates (OCR), mitochondrial membrane potential (Δψm) and uncoupling protein 1 (UCP1) levels increased after 24 h of treatment with either DA or a D1-like specific receptor agonist. A D1-like receptor antagonist abolished the DA-mediated effect on OCR, Δψm and UCP1. DA induced the release of fatty acids, which did not additionally alter DA-mediated increases of OCR. Mitochondrial mass (as determined by (i) CCCP- and oligomycin-mediated effects on OCR and (ii) immunoblot analysis of mitochondrial proteins) also increased within 24 h. This was accompanied by an increase in peroxisome proliferator-activated receptor gamma co-activator 1 alpha protein levels. Also, DA caused an increase in p38 MAPK phosphorylation and pharmacological inhibition of p38 MAPK abolished the DA-mediated effect on Δψm. In summary, our study is the first to reveal direct D1-like receptor and p38 MAPK-mediated increases of thermogenesis and mitochondrial mass in brown adipocytes. These results expand our understanding of catecholaminergic effects on BAT thermogenesis.


2019 ◽  
Vol 44 (12) ◽  
pp. 1267-1275 ◽  
Author(s):  
Zeinab Rezaee ◽  
Sayed Mohammad Marandi ◽  
Hojjatallah Alaei ◽  
Fahimeh Esfarjani

Parkinson’s disease is characterized by neurodegeneration and learning deficiency. Physical exercise can alleviate these symptoms by increasing the expression of some effective and relevant factors. The preventive effect of 16-week treadmill running in a rat model of Parkinson’s disease, before 6-hydroxydopamine (6-OHDA) induction, was assessed. Experimental groups consisted of sedentary (SED), SED+6-OHDA, exercised (EX), and EX+6-OHDA rats. Forty-eight hours after the last session of exercise, 6-OHDA was injected into the medial forebrain bundle (MFB). One week after the injection, behavioral tests, including spatial learning and memory, were assessed through Morris water maze (MWM) and apomorphine-induced rotation. Three weeks after the injection, mRNA expression and protein levels of the transcriptional co-activator peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α), fibronectin type III domain-containing protein 5 (FNDC5), brain-derived neurotrophic factor (BDNF), and tyrosine hydroxylase (TH) were measured in the striatum and the hippocampus of rats by applying real-time PCR and Western blotting. The findings indicate that exposure to 6-OHDA leads to impairments in behavioral and molecular functions. Exercise training prevents and reduces the symptoms caused by dopamine toxins. The results suggest that treadmill running can exert neuroprotective and have preventive effects to reduce Parkinson’s disease symptoms. Novelty Parkinson’s disease impairs spatial learning and memory. Parkinson’s disease reduced levels of PGC-1α, FNDC5, and BDNF and increased neurodegeneration in the striatum and the hippocampus. Treadmill running before disease attenuated 6-OHDA-induced memory deficit and elevated neuroprotection. Exercise has multiple effects on memory and biochemical factors.


2001 ◽  
Vol 280 (4) ◽  
pp. C954-C961 ◽  
Author(s):  
Randall L. Mynatt ◽  
Jacqueline M. Stephens

Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agoutiexpression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-γ protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-γ.


2011 ◽  
Vol 192 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Sean M. Hartig ◽  
Bin He ◽  
Weiwen Long ◽  
Benjamin M. Buehrer ◽  
Michael A. Mancini

The related coactivators SRC-2 and SRC-3 interact with peroxisome proliferator activated receptor γ (PPARγ) to coordinate transcriptional circuits to promote adipogenesis. To identify potential coactivator redundancy during human adipogenesis at single cell resolution, we used high content analysis to quantify links between PPARγ, SRC-2, SRC-3, and lipogenesis. Because we detected robust increases and significant cell–cell heterogeneity in PPARγ and lipogenesis, without changes in SRC-2 or SRC-3, we hypothesized that permissive coregulator levels comprise a necessary adipogenic equilibrium. We probed this equilibrium by down-regulating SRC-2 and SRC-3 while simultaneously quantifying PPARγ. Individual or joint knockdown equally inhibits lipid accumulation by preventing lipogenic gene engagement, without affecting PPARγ protein levels. Supporting dominant, pro-adipogenic roles for SRC-2 and SRC-3, SRC-1 knockdown does not affect adipogenesis. SRC-2 and SRC-3 knockdown increases the proportion of cells in a PPARγhi/lipidlo state while increasing phospho-PPARγ–S114, an inhibitor of PPARγ transcriptional activity and adipogenesis. Together, we demonstrate that SRC-2 and SRC-3 concomitantly promote human adipocyte differentiation by attenuating phospho-PPARγ–S114 and modulating PPARγ cellular heterogeneity.


Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3390-3402 ◽  
Author(s):  
J. E. Caminos ◽  
R. Nogueiras ◽  
F. Gaytán ◽  
R. Pineda ◽  
C. R. González ◽  
...  

Adiponectin is an adipocyte hormone, with relevant roles in lipid metabolism and glucose homeostasis, recently involved in the control of different endocrine organs, such as the placenta, pituitary and, likely, the ovary. However, whether as described previously for other adipokines, such as leptin and resistin, adiponectin is expressed and/or conducts biological actions in the male gonad remains unexplored. In this study, we provide compelling evidence for the expression, putative hormonal regulation, and direct effects of adiponectin in the rat testis. Testicular expression of adiponectin was demonstrated along postnatal development, with a distinctive pattern of RNA transcripts and discernible protein levels that appeared mostly located at interstitial Leydig cells. Testicular levels of adiponectin mRNA were marginally regulated by pituitary gonadotropins but overtly modulated by metabolic signals, such as glucocorticoids, thyroxine, and peroxisome proliferator-activated receptor-γ, whose effects were partially different from those on circulating levels of adiponectin. In addition, expression of the genes encoding adiponectin receptor (AdipoR)-1 and AdipoR2 was detected in the rat testis, with developmental changes and gonadotropin regulation for AdipoR2 mRNA, and prominent levels of AdipoR1 in seminiferous tubules. Moreover, recombinant adiponectin significantly inhibited basal and human choriogonadotropin-stimulated testosterone secretion ex vivo, whereas it failed to change relative levels of several Sertoli cell-expressed mRNAs, such as stem cell factor and anti-Müllerian hormone. In summary, our data are the first to document the expression, regulation and functional role of adiponectin in the rat testis. Taken together with its recently reported expression in the ovary and its effects on LH secretion and ovarian steroidogenesis, these results further substantiate a multifaceted role of adiponectin in the control of the reproductive axis, which might operate as endocrine integrator linking metabolism and gonadal function.


2015 ◽  
Vol 35 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Yuriy Nozhenko ◽  
Ana M. Rodríguez ◽  
Andreu Palou

Background: Skeletal muscle can experience pronounced metabolic adaptations in response to extrinsic stimuli, and expresses leptin receptor (OB-Rb). We aimed to further the understanding of leptin effects on muscle cells, by studying the expression of key energy metabolism genes in C2C12 myotubes. Methods: We performed a dose-time-dependent study with physiological concentrations of leptin: 5, 10 and 50ng/ml, for 0, 30', 3h, 6h, 12h and 24h, also monitoring time-course changes in non-treated cells. mRNA levels were analyzed by RT-qPCR and peroxisome proliferator activated receptor γ coactivator 1α (PGC1α) protein levels by western blot. Results: The most significant effects were observed with 50ng/ml leptin. In the short-term (30' and/or 3h), leptin significantly induced the expression of PGC1α, muscle carnitine palmitoyl transferase 1 (mCPT1), uncoupling protein 3 (UCP3), OB-Rb, Insulin receptor (InsR) and interleukins 6 and 15 (IL6, IL15). There was a decrease in mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and mCPT1 in the long-term (24h). PGC1α protein levels were increased (24h). Conclusion: Leptin rapidly induces the expression of genes important for its own response and the control of metabolic fuels, with the rapid responses of the genes encoding the master regulator PGC1α, mCPT1, UCP3, PDK4 and the signaling secretory molecule IL6 particularly interesting.


Sign in / Sign up

Export Citation Format

Share Document