scholarly journals Silica-encapsulated DNA tracers for measuring aerosol distribution dynamics in real-world settings

Author(s):  
Anne M Luescher ◽  
Julian Koch ◽  
Wendelin J Stark ◽  
Robert N Grass

Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, re-captured and quantified using quantitative polymerase chain reaction (qPCR). Position-dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective and low-impact characterization of aerosol dynamics in a wide range of settings.

2019 ◽  
Vol 101 (7) ◽  
pp. 519-521
Author(s):  
MS Athar ◽  
MA Fazal ◽  
N Ashwood ◽  
G Arealis ◽  
D Buchanan ◽  
...  

Introduction Daycase trauma surgery is an evolving and a novel approach. The aim of our study was to report our experience of daycase trauma surgery with a focus on safety, patient experience, complications and limitations. Material and methods Patients scheduled and operated on a daycase trauma list from January 2013 to December 2016 were included in the study. Age, sex, case mix, readmissions within 48 hours, complications, patient satisfaction, reasons for overnight stay and cost effectiveness were evaluated. Results A total of 229 procedures were carried out. The mean age of the patients was 44.3 years (range 16–85 years) . There were 128 men and 101 women, 178 upper-limb and 51 lower-limb cases. Only 2.6% of the patients had stayed overnight for pain control, physiotherapy and neurological observations; 94.5% of the patients were satisfied. The mean visual analogue scale score for satisfaction was 8.7. There were no admissions within 48 hours of discharge and one complication with failure of ankle fixation. The estimated cost saving was £65,562. Conclusion We conclude that a daycase trauma service is safe, cost effective, and yields high patient satisfaction. It reduces the burden on hospital beds and a wide range of upper- and lower-limb cases can be performed as daycase trauma surgery with adequate planning and teamwork.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 172
Author(s):  
Tobias Zengerle ◽  
Michael Stopp ◽  
Abdallah Ababneh ◽  
Helmut Seidel

This paper investigates the resonant behaviour of silicon-based micro-oscillators with a length of 3600 µm, a width of 1800 µm and a thickness of 10 µm over a wide range of ambient gas (N2) pressures, extending over six orders of magnitude from 10−3 mbar to 900 mbar. The oscillators are actuated piezoelectrically by a thin-film aluminium-nitride (AlN) layer, with the cantilever coverage area being varied from 33% up to 100%. The central focus is on nonlinear Duffing effects, occurring at higher oscillation amplitudes. A theoretical background is provided. All relevant parameters describing a Duffing oscillator, such as stiffness parameters for each coverage size as well as for different bending modes and more complex modes, are extracted from the experimental data. The so-called 2nd roof-tile-shaped mode showed the highest stiffness value of −97.3∙107 m−2s−2. Thus, it was chosen as being optimal for extended range pressure measurements. Interestingly, both a spring softening effect and a spring hardening effect were observed in this mode, depending on the percentage of the AlN coverage area. The Duffing-effect-induced frequency shift was found to be optimal for obtaining the highest pressure sensitivity, while the size of the hysteresis loop is also a very useful parameter because of the possibility of eliminating the temperature influences and long-term drift effects of the resonance frequency. An reasonable application-specific compromise between the sensitivity and the measurement range can be selected by adjusting the excitation voltage, offering much flexibility. This novel approach turns out to be very promising for compact, cost-effective, wide-range pressure measurements in the vacuum range.


2019 ◽  
Author(s):  
Ralf Kurvers ◽  
Stefan Michael Herzog ◽  
Ralph Hertwig ◽  
Jens Krause ◽  
Mehdi Moussaid ◽  
...  

Distinguishing between high- and low-performing individuals and groups is of prime importance in a wide range of high-stakes contexts. While this is straightforward when accurate records of past performance exist, such records are unavailable in most real-world contexts. Focusing on the class of binary decision problems, we use a combined theoretical and empirical approach to develop and test a novel approach to this important problem. First, we employ a general mathematical argument and numerical simulations to show that the similarity of an individual’s decisions to others is a powerful predictor of that individual’s decision accuracy. Second, testing this prediction with several large data sets on breast and skin cancer diagnostics, geopolitical forecasting, and a general knowledge task, we find that decision similarity robustly permits the identification of high-performing individuals and groups. Our findings offer an intriguingly simple, yet broadly applicable, heuristic for improving real-world decision-making systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manash Jyoti Kalita ◽  
Kalpajit Dutta ◽  
Gautam Hazarika ◽  
Ridip Dutta ◽  
Simanta Kalita ◽  
...  

AbstractAs the COVID-19 infection continues to ravage the world, the advent of an efficient as well as the economization of the existing RT-PCR based detection assay essentially can become a blessing in these testing times and significantly help in the management of the pandemic. This study demonstrated an innovative and rapid corroboration of COVID-19 test based on innovative multiplex PCR. An assessment of optimal PCR conditions to simultaneously amplify the SARS-CoV-2 genes E, S and RdRp has been made by fast-conventional and HRM coupled multiplex real-time PCR using the same sets of primers. All variables of practical value were studied by amplifying known target-sequences from ten-fold dilutions of archived positive samples of COVID-19 disease. The multiplexing with newly designed E, S and RdRp primers have shown an efficient amplification of the target region of SARS-CoV-2. A distinct amplification was observed in 37 min using thermal cycler while it took 96 min in HRM coupled real time detection using SYBR green over a wide range of template concentrations. Our findings revealed decent concordance with other commercially available detection kits. This fast HRM coupled multiplex real-time PCR with SYBR green approach offers rapid and sensitive detection of SARS-CoV-2 in a cost-effective manner apart from the added advantage of primer compatibility for use in conventional multiplex PCR. The highly reproducible novel approach can propel extended applicability for developing sustainable commercial product besides providing relief to a resource limited setting.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Domenico Suriano ◽  
Gennaro Cassano ◽  
Michele Penza

Atmospheric pollution is one of the biggest concerns for public health. Air quality monitoring is currently performed by expensive and cumbersome monitoring stations. For this reason, they are sparse, and therefore, inadequate to provide enough accurate information on the personal exposure to pollutant gases. The current worldwide trend to address this issue consists in the use of low-cost small gas sensors, already available on the market, with a wide range of costs and performances. However, the performance of these sensors is heavily affected by the environmental conditions of the specific location used for their deployment. For this reason, it is of fundamental importance to test them in real-world scenarios. Field evaluation of sensor performance could be a challenging task because, on the one hand, they have heterogeneous output signals, and on the other hand, there is no widely shared evaluation protocol. The SentinAir system has been designed and developed to facilitate this task. It can carry out performance evaluations for any type of sensor thanks to its configurable and adaptable sensing capability, multiple wireless sensor network compatibility, flexibility, and usability. In order to evaluate SentinAir capabilities and functionalities, the performances of CO2, NO2, and O3 sensors were tested in real-world scenarios against reference instruments. To the best of our knowledge, there is no previous study providing information about the performance of SP-61 (O3 sensor), IRC-A1 (CO2 sensor), and TDS5008 (CO2 sensor) achieved during on-field tests. On the contrary, results obtained by OXB431 (O3 sensor) and NO2B43F (NO2 sensor) are consistent with the ones shown in previous studies carried out in similar conditions. During validation tests, we have found R2=0.507 for the best performing NO2 sensor, and R2=0.668 for the best O3 sensor. Concerning the indoor experiment, the best CO2 sensor performance showed an excellent R2=0.995. In conclusion, the effectiveness of this tool in evaluating the performance of heterogeneous gas sensors in different real-world scenarios has been demonstrated. Therefore, we anticipate that the use of SentinAir will facilitate researchers to carry out these challenging tasks.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Baowei Li ◽  
Yanran Liu ◽  
Xiaodan Hao ◽  
Jinhua Dong ◽  
Limei Chen ◽  
...  

Abstract Background The detection and identification of single nucleotide polymorphism (SNP) is essential for determining patient disease susceptibility and the delivery of medicines targeted to the individual. At present, SNP genotyping technology includes Sanger sequencing, TaqMan-probe quantitative polymerase chain reaction (qPCR), amplification-refractory mutation system (ARMS)-PCR, and Kompetitive Allele-Specific PCR (KASP). However, these technologies have some disadvantages: the high cost of development and detection, long and time consuming protocols, and high false positive rates. Focusing on these limitations, we proposed a new SNP detection method named universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR). In this method, only two types of fluorescence-labeled probes were used for SNP genotyping, thus greatly reducing the cost of development and detection for SNP genotyping. Results In the amplification process of UPIP-qPCR, unlabeled intermediate primers with template-specific recognition functions could trigger probe hydrolysis and specific signal release. UPIP-qPCR can be used successfully and widely for SNP genotyping. The sensitivity of UPIP-qPCR in SNP genotyping was 0.01 ng, the call rate was more than 99.1%, and the accuracy was more than 99.9%. High-throughput DNA microarrays based on intermediate primers can be used for SNP genotyping. Conclusion This novel approach is both cost effective and highly accurate; it is a reliable SNP genotyping method that would serve the needs of the clinician in the provision of targeted medicine.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Author(s):  
Svitlana Lobchenko ◽  
Tetiana Husar ◽  
Viktor Lobchenko

The results of studies of the viability of spermatozoa with different incubation time at different concentrations and using different diluents are highlighted in the article. (Un) concentrated spermatozoa were diluented: 1) with their native plasma; 2) medium 199; 3) a mixture of equal volumes of plasma and medium 199. The experiment was designed to generate experimental samples with spermatozoa concentrations prepared according to the method, namely: 0.2; 0.1; 0.05; 0.025 billion / ml. The sperm was evaluated after 2, 4, 6 and 8 hours. The perspective of such a study is significant and makes it possible to research various aspects of the subject in a wide range. In this regard, a series of experiments were conducted in this area. The data obtained are statistically processed and allow us to highlight the results that relate to each stage of the study. In particular, in this article it was found out some regularities between the viability of sperm, the type of diluent and the rate of rarefaction, as evidenced by the data presented in the tables. As a result of sperm incubation, the viability of spermatozoa remains at least the highest trend when sperm are diluted to a concentration of 0.1 billion / ml, regardless of the type of diluent used. To maintain the viability of sperm using this concentration of medium 199 is not better than its native plasma, and its mixture with an equal volume of plasma through any length of time incubation of such sperm. Most often it is at this concentration of sperm that their viability is characterized by the lowest coefficient of variation, regardless of the type of diluent used, which may indicate the greatest stability of the result under these conditions. The viability of spermatozoa with a concentration of 0.1 billion / ml is statistically significantly reduced only after 6 or even 8 hours of incubation. If the sperm are incubated for only 2 hours, regardless of the type of diluent used, the sperm concentrations tested do not affect the viability of the sperm. Key words: boar, spermatozoa, sperm plasma, concentration, incubation, medium 199, activity, viability, rarefaction.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Biostatistics ◽  
2019 ◽  
Author(s):  
Dane R Van Domelen ◽  
Emily M Mitchell ◽  
Neil J Perkins ◽  
Enrique F Schisterman ◽  
Amita K Manatunga ◽  
...  

SUMMARYMeasuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


Sign in / Sign up

Export Citation Format

Share Document