scholarly journals Phylogenomic analysis of the genus Pseudomonas and reclassification of P. humi, P. zeshuii, P. psychrotolerans, P. nitritireducens, P. pharmacofabricae and P. panacis are later heterotypic synonym of P. citronellolis Lang 2007, P. luteola, P. oryzihabitans, P. nitroreducens Lang 2007, P. fluvialis and P. marginalis (Brown 1918) Stevens 1925 (Approved Lists 1980), respectively

2021 ◽  
Author(s):  
Ritu Rani Kujur ◽  
Sushanta Deb ◽  
Subrata K Das

The present study described the comparative genomic analysis of the validly named species of the genus Pseudomonas to define the taxonomic assignment. Genomic information for 208 type strains was available in the NCBI genome database at the time of conducting this analysis. The ANI, AAI and in silico DNA DNA hybridization (isDDH) data were higher than the threshold values for the twelve strains with their closely related type species. Whole genome comparisons shared 97 - 99 % average nucleotide identity, 97.85 to 99.19 % average amino acid identity and 72.80 to 90.40 % digital DNA DNA hybridization values. Further, the phylogenomic analysis based on the core genome confirmed that P. humi CCA1 and P. citronellolis LMG 18378, P. zeshuii KACC 15471 and P. luteola NBRC 103146, P. oryzihabitans DSM 6835 and P. psychrotolerans DSM 15758, P. nitroreducens DSM 14399 and P. nitritireducens WZBFD3-5A2, P. fluvialis CCM 8778 and P. pharmacofabricae ZYSR67-Z, P. panacis DSM 18529 and P. marginalis DSM 13124 formed a monophyletic clade. Thus, we proposed six type species viz., P. humi CCA1, P. zeshuii KACC 15471, P. psychrotolerans DSM 15758, P. nitritireducens WZBFD3 5A2, P. pharmacofabricae ZYSR67 Z and P. panacis DSM 18529 are the later heterotypic synonym of P. citronellolis Lang 2007, P. luteola, P. oryzihabitans, P. nitroreducens Lang 2007, P. fluvialis and P. marginalis (Brown 1918) Stevens 1925 (Approved Lists 1980), respectively considering the priority date of publication.

Author(s):  
Priya Singh ◽  
Princy Hira ◽  
Charu Dogra Rawat ◽  
Rup Lal ◽  
Utkarsh Sood

The present study was carried out to clarify the taxonomic assignment of two closely related Amycolatopsis species. Genomic information for 48 type strains was available at the time of conducting this analysis. Our analysis showed that two species, viz. Amycolatopsis eurytherma Kim et al. 2002 and Amycolatopsis thermoflava Chun et al. 1999, are conspecific. The 16S rRNA gene sequences of the two species possess 98.85 % sequence similarity. Further, whole-genome comparisons showed that A. eurytherma DSM 44348T and A. thermoflava N1165T shared 98.75 % average nucleotide identity, 98.63 % average amino acid identity and 87.8 % digital DNA–DNA hybridization values. These values exceed the threshold values for bacterial species delineation, indicating that they belong to the same species. Further, the phylogenomic analysis based on the core genome of the strains under study confirmed that A. eurytherma DSM 44348T and A. thermoflava N1165T formed a monophyletic clade. Based on this evidence we propose the reclassification of Amycolatopsis eurytherma Kim et al. 2002 as a later heterotypic synonym of Amycolatopsis thermoflava Chun et al. 1999.


2020 ◽  
Vol 70 (4) ◽  
pp. 2873-2878 ◽  
Author(s):  
María José León ◽  
Cristina Galisteo ◽  
Antonio Ventosa ◽  
Cristina Sánchez-Porro

A comparative taxonomic study of Spiribacter and Halopeptonella species was carried out using a phylogenomic approach based on comparison of the core genome, orthologous average nucleotide identity (OrthoANIu), Genome-to-Genome Distance Calculator (GGDC) and average amino acid identity (AAI). Phylogenomic analysis based on 976 core translated gene sequences obtained from their genomes showed that Spiribacter aquaticus SP30T, S. curvatus UAH-SP71T, S. roseus SSL50T, S. salinus M19-40T and Halopeptonella vilamensis DSM 21056T formed a robust cluster, clearly separated from the remaining species of closely related taxa. AAI between H. vilamensis DSM 21056T and the species of the genus Spiribacter was ≥73.1 %, confirming that all these species belong to the same single genus. On the other hand, S. roseus SSL50T and S. aquaticus SP30T showed percentages of OrthoANIu and digital DNA–DNA hybridization of 98.4 % and 85.3 %, respectively, while these values among those strains and the type strains of the other species of Spiribacter and H. vilamensis DSM 21056T were ≤80.8 and 67.8 %, respectively. Overall, these data show that S. roseus SSL50T and S. aquaticus SP30T constitute a single species and thus that S. aquaticus SP30T should be considered as a later, heterotypic synonym of S. roseus SSL50T based on the rules for priority of names. We propose an emended description of S. roseus , including the features of S. aquaticus . We also propose the reclassification of H. vilamensis as Spiribacter vilamensis comb. nov.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3507-3510 ◽  
Author(s):  
Christopher A. Dunlap

‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) was isolated from cured vanilla beans and involved in the formation of vanilla aroma compounds. A draft genome of this strain was assembled and yielded a length of 3.71 Mbp with a DNA G+C content of 46.3 mol%. Comparative genomic analysis with its nearest relatives showed only minor differences between this strain and the genome of the Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T), with a calculated DNA–DNA hybridization (DDH) value of 91.2 % and an average nucleotide identity (ANI) of 98.9 %. This DDH value is well above the recommended 70 % threshold for species delineation, as well as the ANI threshold of 95 %. In addition, the results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar with phenotype coherence. A core genome multi-locus sequencing analysis was conducted for the strains and the results show that ‘Bacillus vanillea’ XY18 clusters closely to the type strain of Bacillus siamensis. Therefore, it is proposed that the species ‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) should be reclassified as a later heterotypic synonym of Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T). An emended description of Bacillus siamensis is provided.


2020 ◽  
Vol 70 (11) ◽  
pp. 5880-5887 ◽  
Author(s):  
Guanghua Wang ◽  
Ge Dang ◽  
Shuailiang Xu ◽  
Jianfeng Liu ◽  
Hongfei Su ◽  
...  

A novel Gram-stain-negative, non-endospore-forming, motile, and aerobic bacterial strain, M105T, was isolated from coral Porites lutea, and was subjected to a polyphasic taxonomic study. Global alignment based on 16S rRNA gene sequences indicated that M105T shares the highest sequence identity of 94.5 % with Aliikangiella marina GYP-15T. The average nucleotide identity (ANI) and average amino acid identity (AAI) between M105T and A. marina GYP-15T was 69.8 and 71.6 %, respectively. On the basis of the results of phenotypic, chemotaxonomic, phylogenetic, phylogenomic, and comparative genomic analyses, it is concluded that M105T should represent a novel species in the genus Aliikangiella , for which the name Aliikangiella coralliicola sp. nov. is proposed. The type strain is M105T (=MCCC 1K03773T= KCTC 72442T). Furthermore, the family Kangiellaceae was classified into two families on the basis of phylogenetic, phylogenomic, polar lipid profile and motility variations. The novel family Pleioneaceae fam. nov. is proposed to accommodate the genera Aliikangiella and Pleionea .


Author(s):  
Dominic A. Stoll ◽  
Nicolas Danylec ◽  
Christina Grimmler ◽  
Sabine E. Kulling ◽  
Melanie Huch

The strain Adlercreutzia caecicola DSM 22242T (=CCUG 57646T=NR06T) was taxonomically described in 2013 and named as Parvibacter caecicola Clavel et al. 2013. In 2018, the name of the strain DSM 22242T was changed to Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 due to taxonomic investigations of the closely related genera Adlercreutzia, Asaccharobacter and Enterorhabdus within the phylum Actinobacteria . However, the first whole draft genome of strain DSM 22242T was published by our group in 2019. Therefore, the genome was not available within the study of Nouioui et al. (2018). The results of the polyphasic approach within this study, including phenotypic and biochemical analyses and genome-based taxonomic investigations [genome-wide average nucleotide identity (gANI), alignment fraction (AF), average amino acid identity (AAI), percentage of orthologous conserved proteins (POCP) and genome blast distance phylogeny (GBDP) tree], indicated that the proposed change of the name Parvibacter caecicola to Adlercreutzia caecicola was not correct. Therefore, it is proposed that the correct name of Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 strain DSM 22242T is Parvibacter caecicola Clavel et al. 2013.


Author(s):  
Peter Schumann ◽  
Franziska Kalensee ◽  
Jialan Cao ◽  
Alexis Criscuolo ◽  
Dominique Clermont ◽  
...  

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7–8 and with 0.5–2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys–l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.


2021 ◽  
Author(s):  
Toyoyuki Takada ◽  
Kentaro Fukuta ◽  
Daiki Usuda ◽  
Tatsuya Kushida ◽  
Shinji Kondo ◽  
...  

AbstractLaboratory mouse strains have mosaic genomes derived from at least three major subspecies that are distributed in Eurasia. Here, we describe genomic variations in ten inbred strains: Mus musculus musculus-derived BLG2/Ms, NJL/Ms, CHD/Ms, SWN/Ms, and KJR/Ms; M. m. domesticus-derived PGN2/Ms and BFM/Ms; M. m. castaneus-derived HMI/Ms; and JF1/Ms and MSM/Ms, which were derived from a hybrid between M. m. musculus and M. m. castaneus. These strains were established by Prof. Moriwaki in the 1980s and are collectively named the “Mishima Battery”. These strains show large phenotypic variations in body size and in many physiological traits. We resequenced the genomes of the Mishima Battery strains and performed a comparative genomic analysis with dbSNP data. More than 81 million nucleotide coordinates were identified as variant sites due to the large genetic distances among the mouse subspecies; 8,062,070 new SNP sites were detected in this study, and these may underlie the large phenotypic diversity observed in the Mishima Battery. The new information was collected in a reconstructed genome database, termed MoG+ that includes new application software and viewers. MoG+ intuitively visualizes nucleotide variants in genes and intergenic regions, and amino acid substitutions across the three mouse subspecies. We report statistical data from the resequencing and comparative genomic analyses and newly collected phenotype data of the Mishima Battery, and provide a brief description of the functions of MoG+, which provides a searchable and unique data resource of the numerous genomic variations across the three mouse subspecies. The data in MoG+ will be invaluable for research into phenotype-genotype links in diverse mouse strains.


Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Hanna Choe ◽  
Ji-Sun Kim

A Gram-negative, facultatively anaerobic bacterium, designated SAP-6T, was isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea and its precise taxonomic status was determined by a polyphasic approach. Cells were non-sporulating, motile, short rods and showed growth at 4–37 °C, pH 6.0–8.0 and 0–4% NaCl. Phylogenomic analysis based on 92 core gene sequences showed that strain SAP-6T belonged to the family Pectobacteriaceae and formed a distinct clade between members of the genera Sodalis and Biostraticola with gene support index of 89. The closest phylogenetic neighbours were Biostraticola tofi DSM 19580T (97.3% 16S rRNA gene sequence similarity) and Sodalis praecaptivus HS1T (96.8%), with the average amino acid identity values of 75.3% and 74.0%, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. The major isoprenoid quinones were Q-7 and Q-8. The predominant fatty acids were C16:0, C17:0 cyclo and summed feature 3. The DNA G+C content was 57.0%. On the basis of data presented here, strain SAP-6T (=KCTC 52622T=DSM 104038T) represents a novel species of a new genus in the family Pectobacteriaceae , for which the name Acerihabitans arboris gen. nov., sp. nov. is proposed.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hans Jonsson ◽  
Luisa W. Hugerth ◽  
John Sundh ◽  
Eva Lundin ◽  
Anders F. Andersson

AbstractSegmented filamentous bacteria (SFB) are unique immune modulatory bacteria colonizing the small intestine of a variety of animals in a host-specific manner. SFB exhibit filamentous growth and attach to the host’s intestinal epithelium, offering a physical route of interaction. SFB affect functions of the host immune system, among them IgA production and T-cell maturation. Until now, no human-specific SFB genome has been reported. Here, we report the metagenomic reconstruction of an SFB genome from a human ileostomy sample. Phylogenomic analysis clusters the genome with SFB genomes from mouse, rat and turkey, but the genome is genetically distinct, displaying 65–71% average amino acid identity to the others. By screening human faecal metagenomic datasets, we identified individuals carrying sequences identical to the new SFB genome. We thus conclude that a unique SFB variant exists in humans and foresee a renewed interest in the elucidation of SFB functionality in this environment.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2104-2109 ◽  
Author(s):  
Christopher A. Dunlap ◽  
Soo-Jin Kim ◽  
Soon-Wo Kwon ◽  
Alejandro P. Rooney

The rhizosphere-isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of commercial interest. Here, we present the draft genome sequence of B. methylotrophicus KACC 13105T ( = CBMB205T). Comparative genomic analysis showed only minor differences between this strain and the genome of the B. amyloliquefaciens subsp. plantarum type strain, with the genomes sharing approximately 95 % of the same genes. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar. In fact, our results show that the type strain of B. amyloliquefaciens subsp. plantarum FZB42T ( = DSM 23117T = BGSC 10A6T) does not cluster with other members of the B. amyloliquefaciens taxon. Instead, it clusters well within a clade of strains that are assigned to B. methylotrophicus, including the type strain of that species. Therefore, we propose that the subspecies B. amyloliquefaciens subsp. plantarum should be reclassified as a later heterotypic synonym of B. methylotrophicus.


Sign in / Sign up

Export Citation Format

Share Document