scholarly journals Late-in-life treadmill-training rejuvenates autophagy, protein aggregate clearance, and function in mouse hearts.

2021 ◽  
Author(s):  
Jae Min Cho ◽  
Kellsey Ly ◽  
Caroline Ramous ◽  
Lauren Thompson ◽  
Michele Hansen ◽  
...  

There is evidence for a progressive decline of protein quality control mechanisms during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age-associated cardiac dysfunction. Macroautophagy (referred to as autophagy) is the process by which post-mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late-in-life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs adult mice. As expected, 24-month old male C57BL/6J mice (old) exhibited : (i) repressed autophagosome formation and protein aggregate accumulation in the heart; (ii) systolic and diastolic dysfunction; and (iii) reduced exercise capacity, vs. 8-month old (adult) mice (all p< .05). Separate cohorts of 21 month old mice completed a 3-month progressive resistance treadmill-running program (old-ETR) that improved (all < .05) : (i) body composition; (ii) exercise capacity; and (iii) soleus muscle citrate synthase activity, vs. age-matched mice that did not train (old-SED). Importantly, (iv) protein expression of autophagy markers indicated trafficking of the autophagosome to the lysosome increased, (v) protein aggregate clearance improved, and (vi) overall function was enhanced (all p<0.05), in hearts from old-ETR vs. old-SED mice. Dietary maneuvers and pharmacological interventions shown to elevate basal autophagy are reported to mitigate / reverse age-associated cardiac dysfunction. Here we show the first evidence that a physiological intervention initiated late-in-life improves autophagic flux, protein aggregate clearance, and overall function in mouse hearts.

2017 ◽  
Vol 45 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Jeyapriya R. Sundaram ◽  
Irene C.J. Lee ◽  
Shirish Shenolikar

Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.


Author(s):  
Mingming Tong ◽  
Toshiro Saito ◽  
Peiyong Zhai ◽  
Shin-ichi Oka ◽  
Wataru Mizushima ◽  
...  

Rationale: Obesity-associated cardiomyopathy characterized by hypertrophy and mitochondrial dysfunction. Mitochondrial quality control mechanisms, including mitophagy, are essential for the maintenance of cardiac function in obesity-associated cardiomyopathy. However, autophagic flux peaks at around 6 weeks of high fat diet (HFD) consumption and declines thereafter. Objective: We investigated whether mitophagy is activated during the chronic phase of cardiomyopathy associated with obesity (obesity cardiomyopathy) after general autophagy is downregulated and, if so, what the underlying mechanism and the functional significance are. Methods and Results: Mice were fed either a normal diet (ND) or a HFD (60 kcal % fat). Mitophagy, evaluated using Mito-Keima, was increased after 3 weeks of HFD consumption and continued to increase after conventional mechanisms of autophagy were inactivated, at least until 24 weeks. HFD consumption time-dependently up-regulated both Ser555-phosphorylated Ulk1 and Rab9 in the mitochondrial fraction. Mitochondria were sequestrated by Rab9-positive ring-like structures in cardiomyocytes isolated from mice after 20 weeks of HFD consumption, consistent with the activation of alternative mitophagy. Increases in mitophagy induced by HFD consumption for 20 weeks were abolished in cardiac-specific ulk1 knockout mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. Rab9 S179A knock-in mice, in which alternative mitophagy is selectively suppressed, exhibited impaired mitophagy and more severe cardiac dysfunction than control mice following HFD consumption for 20 weeks. Overexpression of Rab9 in the heart increased mitophagy and protected against cardiac dysfunction during HFD consumption. HFD-induced activation of Rab9-dependent mitophagy was accompanied by upregulation of TFE3, which plays an essential role in transcriptional activation of mitophagy. Conclusions: Ulk1-Rab9-dependent alternative mitophagy is activated during the chronic phase of HFD consumption and serves as an essential mitochondrial quality control mechanism, thereby protecting the heart against obesity cardiomyopathy.


2013 ◽  
Vol 305 (8) ◽  
pp. E1018-E1029 ◽  
Author(s):  
Colby B. Tanner ◽  
Steven R. Madsen ◽  
David M. Hallowell ◽  
Darren M. J. Goring ◽  
Timothy M. Moore ◽  
...  

LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training.


Author(s):  
Rachel J. Harding ◽  
Yufeng Tong

Many neurodegenerative diseases are characterised by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington&rsquo;s disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular the ubiquitin proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 120-121
Author(s):  
Chloey P Guy ◽  
Catherine L Wellman ◽  
David G Riley ◽  
Charles R Long ◽  
Ron D Randel ◽  
...  

Abstract We previously determined that prenatal stress (PNS) differentially affected methylation of DNA from leukocytes of 28-d-old calves. Specifically, COX14 (cytochrome c oxidase (COX) assembly factor) and CKMT1B (mitochondrial creatine kinase U-type) were hypomethylated and COA5 (COX assembly factor 5), COX5A (COX subunit 5A), NRF1 (nuclear respiratory factor 1), and GSST1 (glutathione S-transferase theta-1) were hypermethylated in PNS compared to non-PNS calves (P ≤ 0.05). Our current objective was to test the hypothesis that PNS exhibit impaired mitochondrial function and greater oxidative stress than non-PNS calves. Blood and longissimus dorsi muscle samples were collected from yearling Brahman calves whose mothers were stressed by 2 h transportation at 60, 80, 100, 120, and 140 days of gestation (PNS; 8 bulls, 6 heifers) and non-PNS calves (4 bulls, 6 heifers). Serum was evaluated for the stress hormone, cortisol, and muscle damage marker, creatine kinase; muscle was analyzed for mitochondrial volume density and function by citrate synthase (CS) and COX activities, respectively, concentration of malondialdehyde, a lipid peroxidation marker, and activity of the antioxidant, superoxide dismutase (SOD). Data were analyzed using mixed linear models with treatment and sex as fixed effects. Serum cortisol was numerically higher in PNS than non-PNS calves but was not statistically different. Muscle CS and COX activities relative to protein were greater in PNS than non-PNS calves (P ≤ 0.03), but COX relative to CS activity was similar between groups. Activity of COX was greater in bulls than heifers (P = 0.03), but no other measure was affected by sex. All other measures were unaffected by PNS. Prenatal stress did not affect markers of muscle damage and oxidative stress in yearling Brahman calves at rest but mitochondrial volume density and function were greater in PNS calves. Acute stressors induce oxidative stress, so implications of differences in mitochondria in PNS calves following a stressor should be investigated.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 611
Author(s):  
Sihui Ma ◽  
Jiao Yang ◽  
Takaki Tominaga ◽  
Chunhong Liu ◽  
Katsuhiko Suzuki

The low-carbohydrate ketogenic diet (LCKD) is a dietary approach characterized by the intake of high amounts of fat, a balanced amount of protein, and low carbohydrates, which is insufficient for metabolic demands. Previous studies have shown that an LCKD alone may contribute to fatty acid oxidation capacity, along with endurance. In the present study, we combined a 10-week LCKD with an 8-week forced treadmill running program to determine whether training in conjunction with LCKD enhanced fatty acid oxidation capacity, as well as whether the maximal exercise capacity would be affected by an LCKD or training in a mice model. We found that the lipid pool and fatty acid oxidation capacity were both enhanced following the 10-week LCKD. Further, key fatty acid oxidation related genes were upregulated. In contrast, the 8-week training regimen had no effect on fatty acid and ketone body oxidation. Key genes involved in carbohydrate utilization were downregulated in the LCKD groups. However, the improved fatty acid oxidation capacity did not translate into an enhanced maximal exercise capacity. In summary, while favoring the fatty acid oxidation system, an LCKD, alone or combined with training, had no beneficial effects in our intensive exercise-evaluation model. Therefore, an LCKD may be promising to improve endurance in low- to moderate-intensity exercise, and may not be an optimal choice for those partaking in high-intensity exercise.


2021 ◽  
pp. 153537022199981
Author(s):  
Chamithi Karunanayake ◽  
Richard C Page

The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Carolyn N. Brown ◽  
Daniel Atwood ◽  
Deepak Pokhrel ◽  
Sara J. Holditch ◽  
Christopher Altmann ◽  
...  

AbstractMany surgical models are used to study kidney and other diseases in mice, yet the effects of the surgical procedure itself on the kidney and other tissues have not been elucidated. In the present study, we found that both sham surgery and unilateral nephrectomy (UNX), which is used as a model of renal compensatory hypertrophy, in mice resulted in increased mammalian target of rapamycin complex 1/2 (mTORC1/2) in the remaining kidney. mTORC1 is known to regulate lysosomal biogenesis and autophagy. Genes associated with lysosomal biogenesis and function were decreased in sham surgery and UNX kidneys. In both sham surgery and UNX, there was suppressed autophagic flux in the kidney as indicated by the lack of an increase in LC3-II or autophagosomes seen on immunoblot, IF and EM after bafilomycin A1 administration and a concomitant increase in p62, a marker of autophagic cargo. There was a massive increase in pro-inflammatory cytokines, which are known to activate ERK1/2, in the serum after sham surgery and UNX. There was a large increase in ERK1/2 in sham surgery and UNX kidneys, which was blocked by the MEK1/2 inhibitor, trametinib. Trametinib also resulted in a significant decrease in p62. In summary, there was an intense systemic inflammatory response, an ERK-mediated increase in p62 and suppressed autophagic flux in the kidney after sham surgery and UNX. It is important that researchers are aware that changes in systemic pro-inflammatory cytokines, ERK1/2 and autophagy can be caused by sham surgery as well as the kidney injury/disease itself.


Sign in / Sign up

Export Citation Format

Share Document