scholarly journals Arabidopsis stomatal polarity protein BASL mediates distinct processes before and after cell division to coordinate cell size and fate asymmetries

2021 ◽  
Author(s):  
Yan Gong ◽  
Julien Alassimone ◽  
Andrew Muroyama ◽  
Gabriel Amador ◽  
Rachel Varnau ◽  
...  

In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates multiple aspects of ACD including division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before the ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs and to uncover the rules that guide leaf pattern. Here we combine quantitative imaging and lineage tracking with genetic tools that provide temporally-restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.

Development ◽  
2021 ◽  
Author(s):  
Yan Gong ◽  
Julien Alassimone ◽  
Andrew Muroyama ◽  
Gabriel Amador ◽  
Rachel Varnau ◽  
...  

In many land plants, asymmetric cell divisions (ACDs) create, and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates ACD division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.


2021 ◽  
Author(s):  
Ido Nir ◽  
Gabriel O Amador ◽  
Yan Gong ◽  
Nicole K Smoot ◽  
Le Cai ◽  
...  

Asymmetric and oriented stem cell divisions enable the continued production of patterned tissues. The molecules that guide these divisions include several polarity proteins that are localized to discrete plasma membrane domains, are differentially inherited during asymmetric divisions, and whose scaffolding activities can guide division plane orientation and subsequent cell fates. In the stomatal lineages on the surfaces of plant leaves, asymmetric and oriented divisions create distinct cell types in physiologically optimized patterns. The polarity protein BASL is a major regulator of stomatal lineage division and cell fate asymmetries in Arabidopsis, but its role in the stomatal lineages of other plants was unclear. Here, using phylogenetic and functional assays, we demonstrate that BASL is a dicot specific polarity protein. Among dicots, divergence in BASLs roles may reflect some intrinsic protein differences, but more likely reflects previously unappreciated differences in how asymmetric cell divisions are employed for pattern formation in different species. This multi-species analysis therefore provides insight into the evolution of a unique polarity regulator and into the developmental choices available to cells as they build and pattern tissues.


2019 ◽  
Author(s):  
Matthew H. Rowe ◽  
Juan Dong ◽  
Annika K. Weimer ◽  
Dominique C. Bergmann

SUMMARYGenerating cell polarity in anticipation of asymmetric cell division is required in many developmental contexts across a diverse range of species. Physical and genetic diversity among major multicellular taxa, however, demand different molecular solutions to this problem. The Arabidopsis stomatal lineage displays asymmetric, stem cell-like and oriented cell divisions, which require the activity of the polarly localized protein, BASL. Here we identify the plant-specific BREVIS RADIX (BRX) family as localization and activity partners of BASL. We show that members of the BRX family are polarly localized to peripheral domains in stomatal lineage cells and that their collective activity is required for asymmetric cell divisions. We further demonstrate a mechanism for these behaviors by uncovering mutual, yet unequal dependencies of BASL and the BRX family for each other’s localization and segregation at the periphery of stomatal lineage cells.


2017 ◽  
Author(s):  
Abigail R. Gerhold ◽  
Vincent Poupart ◽  
Jean-Claude Labbé ◽  
Paul S. Maddox

AbstractThe spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability. Despite its central role in preserving the fidelity of mitosis, the strength of the SAC varies widely between cell types. How the SAC is adapted to different cellular contexts remains largely unknown. Here we show that both cell size and cell fate impact SAC strength. While smaller cells have a stronger SAC, cells with a germline fate show increased SAC activity relative to their somatic counterparts across all cell sizes. We find that enhanced SAC activity in the germline blastomere P1 requires proper specification of cell fate downstream of the conserved PAR polarity proteins, supporting a model in which checkpoint factors are distributed asymmetrically during early germ cell divisions. Our results indicate that size scaling of SAC activity is modulated by cell fate and reveal a novel interaction between asymmetric cell division and the SAC.


2018 ◽  
Author(s):  
Emily Abrash ◽  
M Ximena Anleu Gil ◽  
Juliana L Matos ◽  
Dominique C Bergmann

AbstractAll multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our interpretations of MAPK activities during plant asymmetric cell divisions.Summary StatementAnalysis of Brachypodium leaf epidermis development reveals that the MAPKKK, BdYODA1, regulates asymmetric divisions by enforcing resultant cell fates rather than driving initial physical asymmetries.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 325
Author(s):  
Petra Korać ◽  
Mariastefania Antica ◽  
Maja Matulić

MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.


2021 ◽  
Vol 7 (1) ◽  
pp. 37
Author(s):  
Mohammad N. Qasim ◽  
Ashley Valle Arevalo ◽  
Clarissa J. Nobile ◽  
Aaron D. Hernday

Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as “white” and “opaque”. These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively “simple” model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


2021 ◽  
Vol 22 (13) ◽  
pp. 7043
Author(s):  
Shaida Ouladan ◽  
Alex Gregorieff

Despite the environmental constraints imposed upon the intestinal epithelium, this tissue must perform essential functions such as nutrient absorption and hormonal regulation, while also acting as a critical barrier to the outside world. These functions depend on a variety of specialized cell types that are constantly renewed by a rapidly proliferating population of intestinal stem cells (ISCs) residing at the base of the crypts of Lieberkühn. The niche components and signals regulating crypt morphogenesis and maintenance of homeostatic ISCs have been intensely studied over the last decades. Increasingly, however, researchers are turning their attention to unraveling the mechanisms driving gut epithelial regeneration due to physical damage or infection. It is now well established that injury to the gut barrier triggers major cell fate changes, demonstrating the highly plastic nature of the gut epithelium. In particular, lineage tracing and transcriptional profiling experiments have uncovered several injury-induced stem-cell populations and molecular markers of the regenerative state. Despite the progress achieved in recent years, several questions remain unresolved, particularly regarding the mechanisms driving dedifferentiation of the gut epithelium. In this review, we summarize the latest studies, primarily from murine models, that define the regenerative processes governing the gut epithelium and discuss areas that will require more in-depth investigation.


Sign in / Sign up

Export Citation Format

Share Document