scholarly journals The flying insect thoracic cuticle is heterogenous in structure and in thickness-dependent modulus gradation

2021 ◽  
Author(s):  
Cailin Casey ◽  
Claire Yager ◽  
Mark Jankauski ◽  
Chelsea M Heveran

The thorax is a specialized structure central to insect flight. In the thorax, flight muscles are surrounded by a thin layer of cuticle. The structure, composition, and material properties of this chitinous structure may influence the efficiency of the thorax in flight. However, these properties, as well as their variation throughout anatomical regions of the thorax or between insect taxa, are not known. In this work, we provide a multi-faceted assessment of thorax cuticle for fliers with asynchronous (honey bee; Apis mellifera) and synchronous (hawkmoth; Manduca sexta) muscles. We investigated cuticle structure using histology, material composition through confocal laser scanning microscopy, and modulus gradation with nanoindentation. Our results suggest that cuticle properties of the thorax are highly dependent on anatomical region and species. Modulus gradation, but not mean modulus, differed between the two types of fliers. In some regions, A. mellifera had a positive linear modulus gradient from cuticle interior to exterior of about 2 GPa. In M. sexta, the modulus gradients were variable and were not well represented by linear fits with respect to cuticle thickness. We utilized finite element modeling to assess how measured modulus gradients influenced maximum stress in cuticle. Stress was reduced when cuticle with a linear gradient was compressed from the high modulus side. These results support the protective role of the A. mellifera thorax cuticle. Our multi-faceted assessment advances our understanding of thorax cuticle structural and material heterogeneity and the potential benefit of material gradation to flying insects.

2001 ◽  
Vol 114 (9) ◽  
pp. 1643-1653 ◽  
Author(s):  
Z. Dastoor ◽  
J.L. Dreyer

Recent studies indicating a role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptosis or oxidative stress has been reported. Using confocal laser-scanning microscopy, we have investigated the cellular distribution of GAPDH in central nervous system (CNS)-derived cells (neuroblastoma mNB41A3), in non-CNS derived cells (R6 fibroblast) and in an apoptosis-resistant Bcl2 overexpressing cell line (R6-Bcl2). Induction of apoptosis by staurosporine or MG132 and oxidative stress by H(2)O(2) or FeCN enhanced the nuclear translocation of endogenous GAPDH in all cell types, as detected by immunocytochemistry. In apoptotic cells, GAPDH expression is three times higher than in non-apoptotic cells. Consistent with a role for GAPDH in apoptosis, overexpression of a GAPDH-green fluorescent protein (GAPDH-GFP) hybrid increased nuclear import of GAPDH-GFP into transfected cells and the number of apoptotic cells, and made them more sensitive to agents that induce apoptosis. Bcl2 overexpression prevents nuclear translocation of GAPDH and apoptosis in untransfected cells, but not in transfected cells that overexpress GAPDH-GFP. Our observations indicate that nuclear translocation of GAPDH may play a role in apoptosis and oxidative stress, probably related to the activity of GAPDH as a DNA repair enzyme or as a nuclear carrier for pro-apoptotic molecules.


2006 ◽  
Vol 57 (4) ◽  
pp. 415 ◽  
Author(s):  
Christian Wild ◽  
Christian Laforsch ◽  
Markus Huettel

In order to assess and to compare the abundances of prokaryotes in coral sands from three different areas in the Indo-Pacific, a technique was developed and evaluated for enumeration of prokaryotes living on and within calcareous grains. Propidium iodide labelling of prokaryotes and consecutive confocal laser scanning microscopy showed microbial colonisation within pores and small fissures of the coral sands. This embedded microbial colonisation required at least four extractions with weak acetic acid to dissolve the grain surface layer in order to detach 97% of the prokaryotic cells. Microbial enumeration based on this technique revealed that the abundance of prokaryotes in the carbonate sands were not significantly different among the three sites, but were about one order of magnitude higher than reported for silicate sands of a similar grain size spectrum. A possible reason for this high abundance of prokaryotes is the complex surface structure of the biogenic calcareous grains, their correspondingly highly porous matrix and the associated ability of prokaryotes to penetrate into carbonate grains. Our results highlight the role of calcareous reef sands as a substratum with a large specific surface area for prokaryotic colonisation and emphasise the contribution of calcium carbonate reef sands for element cycles in subtropical and tropical ecosystems.


2008 ◽  
Vol 57 (12) ◽  
pp. 1466-1472 ◽  
Author(s):  
Helena Bujdáková ◽  
Ema Paulovičová ◽  
Silvia Borecká-Melkusová ◽  
Juraj Gašperík ◽  
Soňa Kucharíková ◽  
...  

The Candida antigen CR3-RP (complement receptor 3-related protein) is supposed to be a ‘mimicry’ protein because of its ability to bind antibody directed against the α subunit of the mammalian CR3 (CD11b/CD18). This study aimed to (i) investigate the specific humoral isotypic response to immunization with CR3-RP in vivo in a rabbit animal model, and (ii) determine the role of CR3-RP in the adherence of Candida albicans in vitro using the model systems of buccal epithelial cells (BECs) and biofilm formation. The synthetic C. albicans peptide DINGGGATLPQ corresponding to 11 amino-acids of the CR3-RP sequence DINGGGATLPQALXQITGVIT, determined by N-terminal sequencing, was used for immunization of rabbits to obtain polyclonal anti-CR3-PR serum and for subsequent characterization of the humoral isotypic response of rabbits. A significant increase of IgG, IgA and IgM anti-CR3-RP specific antibodies was observed after the third (P<0.01) and the fourth (P<0.001) immunization doses. The elevation of IgA levels suggested peptide immunomodulation of the IgA1 subclass, presumably in coincidence with Candida epithelial adherence. Blocking CR3-RP with polyclonal anti-CR3-RP serum reduced the ability of Candida to adhere to BECs, in comparison with the control, by up to 35 % (P<0.001), and reduced biofilm formation by 28 % (P<0.001), including changes in biofilm thickness and integrity detected by confocal laser scanning microscopy. These properties of CR3-RP suggest that it has potential for future vaccine development.


2019 ◽  
Vol 58 (5) ◽  
pp. 690-697
Author(s):  
Yan Ma ◽  
Ying Ji ◽  
Jing Yang ◽  
Wen Li ◽  
Jiajuan Li ◽  
...  

Abstract Bud emergence 46 (BEM46), a member of the α/β hydrolase superfamily, has been reported to be essential for polarized growth in Neurospora crassa. However, the role of BEM46 in aspergillus fumigatus (A. fumigatus) remains unclear. In this study, we constructed an A. fumigatus strain expressing BEM46 fused with enhanced green fluorescent protein, and a Δbem46 mutant, to explore the localization and the role of growth of BEM46 in A. fumigatus, respectively. Confocal laser scanning microscopy revealed that BEM46 was dominantly expressed in the sites where hyphae germinated from conidia in A. fumigatus. When compared with the control strain, the Δbem46 mutant exhibited insignificant morphological changes but delayed germination. No significant changes were found regarding the radial growth of both strains in response to various antifungal agents. These results suggest that BEM46 plays an essential role in timely germination in A. fumigatus. From the observation of fluorescence localization, we infer that that BEM46 might be involved in polarized growth in A. fumigatus.


Author(s):  
Donald H. Szarowski ◽  
Michael Fejtl ◽  
Paul McCauley ◽  
David O. Carpenter ◽  
James N. Turner

Confocal laser scanning microscopy (CLSM) has been used to correlate morphology and membrane physiology in cultured neurons, providing a model system for studying physiologic and pathologic conditions. Ion channels are studied by patch-clamp methods as a function of receptor stimulation and toxic excitatory amino acids, including those implicated in Alzheimer’s dementia. Glial cells are often closely associated with the neurons, and are difficult to detect in living cultures due to the relative sizes of glia and neurons (5-20 μm versus 125 μm), compounded with the fact that they are thick phase objects. Groups of glia can also be confused with neurons. Thus it is difficult to select appropriate cells and/or cell regions for patch-clamping. We are correlating physiology and conventional light microscopy with CLSM to determine the role of glia, and neuron surface geometry on the ability to establish Gigaohm membrane-micropipette seals. Morphology of the system as observed by CLSM is presented here.


2001 ◽  
Vol 43 (6) ◽  
pp. 143-151 ◽  
Author(s):  
M. Kuehn ◽  
M. Mehl ◽  
M. Hausner ◽  
H.-J. Bungartz ◽  
S. Wuertz

Cellular material and extracellular polymeric substances are the basic structural elements in biofilm systems. The structure and role of EPS for biofilm development and metabolic processes have not been precisely determined and, therefore, have not yet been included as a necessary element in modelling and simulation studies. This is due to the difficulty of experimentally detecting the extracellular polymeric substances in situ and differentiating them from cellular material on the one hand, and to the subsequent uncertainty about appropriate models - e.g. rigid hindrances, porous microstructure or visco-elastic structure - on the other hand. In this work, we report on the use of confocal laser scanning microscopy to monitor the development of a monoculture biofilm of Sphingomonas sp. grown in a flow cell. The bacterial strain was genetically labelled resulting in strong constitutive expression of the green fluorescent protein. The development of extracellular polymeric substances was followed bybinding of the lectin concavalin A to cell exopolysaccharides. The growth of the resulting strain was digitally recorded by automated confocal laser scanning microscopy. In addition, local velocity profiles of fluorescent carboxylate-modified microspheres were observed on pathlines throughout the biofilm. The CLSM image stacks were used as direct input for the explicit modelling and three-dimensional numerical simulation of flow fields and solute transport processes based on the conservation laws of continuum mechanics. At present, a strongly simplifying EPS-model is applied for numerical simulations. The EPSs are preliminarily assumed to behave like a rigid and dense hindrance with diffusive-reactive solute transport.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibrahima Drame ◽  
Christine Lafforgue ◽  
Cecile Formosa-Dague ◽  
Marie-Pierre Chapot-Chartier ◽  
Jean-Christophe Piard ◽  
...  

AbstractLactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4–100 kPa) than those of piliated strains (Young Modulus around 0.04–0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.


2011 ◽  
Vol 77 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Aamir Ghafoor ◽  
Iain D. Hay ◽  
Bernd H. A. Rehm

ABSTRACTPseudomonas aeruginosais an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslAΔalg8overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture ofP. aeruginosa.


2021 ◽  
Vol 22 (15) ◽  
pp. 8241
Author(s):  
Yvann Bourigault ◽  
Sophie Rodrigues ◽  
Alexandre Crépin ◽  
Andrea Chane ◽  
Laure Taupin ◽  
...  

Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.


2008 ◽  
Vol 294 (6) ◽  
pp. G1328-G1334 ◽  
Author(s):  
Ahsan U. Shah ◽  
Wayne M. Grant ◽  
Sahibzada U. Latif ◽  
Zahir M. Mannan ◽  
Alexander J. Park ◽  
...  

Cytosolic Ca2+ (Ca[Formula: see text]) flux within the pancreatic acinar cell is important both physiologically and pathologically. We examined the role of cAMP in shaping the apical-to-basal Ca2+ wave generated by the Ca2+-activating agonist carbachol. We hypothesized that cAMP modulates intra-acinar Ca2+ channel opening by affecting either cAMP-dependent protein kinase (PKA) or exchange protein directly activated by cAMP (Epac). Isolated pancreatic acinar cells from rats were stimulated with carbachol (1 μM) with or without vasoactive intestinal polypeptide (VIP) or 8-bromo-cAMP (8-Br-cAMP), and then Ca[Formula: see text] was monitored by confocal laser-scanning microscopy. The apical-to-basal carbachol (1 μM)-stimulated Ca2+ wave was 8.63 ± 0.68 μm/s; it increased to 19.66 ± 2.22 μm/s (* P < 0.0005) with VIP (100 nM), and similar increases were observed with 8-Br-cAMP (100 μM). The Ca2+ rise time after carbachol stimulation was reduced in both regions but to a greater degree in the basal. Lag time and maximal Ca2+ elevation were not significantly affected by cAMP. The effect of cAMP on Ca2+ waves also did not appear to depend on extracellular Ca2+. However, the ryanodine receptor (RyR) inhibitor dantrolene (100 μM) reduced the cAMP-enhancement of wave speed. It was also reduced by the PKA inhibitor PKI (1 μM). 8-(4-chloro-phenylthio)-2′- O-Me-cAMP, a specific agonist of Epac, caused a similar increase as 8-Br-cAMP or VIP. These data suggest that cAMP accelerates the speed of the Ca2+ wave in pancreatic acinar cells. A likely target of this modulation is the RyR, and these effects are mediated independently by PKA and Epac pathways.


Sign in / Sign up

Export Citation Format

Share Document