scholarly journals Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica.

2021 ◽  
Author(s):  
Tatiane Matarazzo Cantero Campos ◽  
Pedro Ismael da Silva Junior ◽  
Giuseppina Negri ◽  
Roberto Manuel do Nascimento ◽  
Ronaldo Zucatelli Mendonca

Stingless bees belonging to the Meliponinae subfamily, are known as meliponines. Scaptotrigona affinis postica Latreille, 1807 from northeast of Brazil is popularly known as tubi in Maranhao State. Scaptotrigona, which is widely distributed in neotropical regions, includes species that build their hives in pre-existing cavities. Flavones di-C-glycosides, and the pyrrolizidine alkaloid 7-(3-methoxy-2-methylbutyryl)-9-echimidinylretronecine were reported previously in propolis from S. postica. Fractions 40 AEP and 40 MEP from ethanolic extract were analyzed by LC-MS. The chromatographic profile of fractions 40 AEP and 40 MEP revealed the presence of many pyrrolizidine alkaloids, among them, lithosenine (14), lithosenine arabinoside (19), 7-angeloyl-9-(2,3-dihydroxybutyryl) retronecine (1), 7-(2-methylbutyryl) retronecine (3), 9-sarracinoylretronecine (13) and viridinatine (8), besides the flavonoids schaftoside (15), aromadendrin-7-O-methyl ether (12), 7-methoxy-5,6,3,4,5,6-hexahydroxy-flavone-3-O-glucuronide (11), mangiferin (10) and 3-O-methyl mangiferin (17). Fractions 40 AEP and 40 MEP showed antimicrobial activity against Gram positive bacteria, including Escherichia coli D31- streptomycin resistant. Cell viability was expressed in terms of the relative absorbance of treated and untreated cells (control). There was no statistical difference between treated and untreated cells.

Author(s):  
Shobha Kl ◽  
Amita Shobha Rao ◽  
Pai Ksr ◽  
Sujatha Bhat

Objective: The objective of this study was to evaluate the antimicrobial activity of leaves of Anacardium occidentale (A. occidentale) against microorganisms including multidrug-resistant (MDR) bacteria. Methods: Agar well diffusion method was employed to demonstrate the antimicrobial activity of leaves A. occidentale. Ethanol and aqueous extracts of the leaves were used against microorganisms, which included American type culture collection strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa and the clinical isolates of Streptococcus pneumoniae, Candida albicans, MDR Escherichia coli, and MDR Klebsiella pneumoniae. Results: The ethanolic extract of leaves of A. occidentale showed significant antimicrobial activity. Aqueous extract had mild antifungal activity. Conclusion: Ethanolic extract of leaves of A. occidentale could be a good source for the antibacterials to combat MDR bacterial infections. Further studies are necessary for these potent plant extracts to evaluate the in vivo efficacy and toxicity.


2009 ◽  
Vol 4 (1) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Branislava Lakušić ◽  
Violeta Slavkovska ◽  
Milica Pavlović ◽  
Marina Milenković ◽  
Jelena Antić Stanković ◽  
...  

The essential oils of the aerial parts and fruits of Chaerophyllum aureum L., collected from two mountains in Serbia, were analyzed by GC and GC/MS. Sabinene (18.5-31.6%), p-cymene (7.9-25.4%) and limonene (1.9-10.9%) were characterized as the main constituents. The oils were tested against six bacterial strains and one strain of yeast, Candida albicans. The highest antimicrobial activity was observed against the Gram-positive bacteria Staphylococcus aureus, S. epidermidis and Micrococcus luteus, while of the Gram-negative strains, Escherichia coli was the most sensitive.


2011 ◽  
Vol 322 ◽  
pp. 160-163
Author(s):  
Yin Lu ◽  
Hong Chen

A medicinal wild kiwi in China, Actinidia valvata Dunn, has been well known for its activities against leprosy and cancers. The compositions and the antimicrobial activity of its leaf oil were reported for the first time. The oil obtained by hydrodistillation and analyzed by GC and GC-MS, was characterized by the high content of monoterpenes. Linalool (48.14%) is the major component identified, followed by 1,2-dimethyl-lindoline (7.94%), linolenic acid methylester (6.57%) and (E)-phytol (5.29%). The antimicrobial activity of the oil was evaluated against four bacterial and three fungal species. The results showed that it exhibited a mild antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), a significant activity against Gram-negative bacteria (Escherichia coli), and no activity on Pseudomonas aeruginosa. The test fungi were more sensitive to the oil, with a MIC range of 0.78~1.56 μL/mL than bacteria in the range which were significantly higher from 0.78 to 25.50 μL/mL.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2047 ◽  
Author(s):  
Izabela Przybyłek ◽  
Tomasz M. Karpiński

Researchers are continuing to discover all the properties of propolis due to its complex composition and associated broad spectrum of activities. This review aims to characterize the latest scientific reports in the field of antibacterial activity of this substance. The results of studies on the influence of propolis on more than 600 bacterial strains were analyzed. The greater activity of propolis against Gram-positive bacteria than Gram-negative was confirmed. Moreover, the antimicrobial activity of propolis from different regions of the world was compared. As a result, high activity of propolis from the Middle East was found in relation to both, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Simultaneously, the lowest activity was demonstrated for propolis samples from Germany, Ireland and Korea.


Author(s):  
Aditya Jyoti Bora ◽  
Biswajit Dash ◽  
Sujata Paul ◽  
Bikash Gupta

Objective: To estimate the anti-microbial activity of ethanolic extract of Punica granatum seeds (family-Punicaceae) in association with phytochemical analysis.Methods: The ethanolic extract of the seeds of Punica granatum was prepared and investigate for phytochemical constituents using standard methods. Antimicrobial activities of ethanolic extract were carried out against one Gram positive bacteria (Staphylococcus aureus) and one Gram negative bacteria (Escherichia coli). The anti-fungal activity of the plant extract was evaluated on Candida albicans. The testing was done by the disc diffusion method. A zone of inhibition of ethanolic extract was compared with that of standard Tetracycline for anti-bacterial activities and Fluconazole for anti-fungal activity.Results: The result of this study showed a good antibacterial effect of pomegranate juice against both Gram negative and Gram positive bacteria. The antimicrobial activity of the fruit may be due to its high content of polyphenols which causes phenolic toxicity by interfering with the sulfhydryl group of the bacterial proteins and high content of tannins which interferes with bacterial membrane stability.Conclusion: The present study concluded that ethanolic extract of the seeds of Punica granatum contains the high existence of phytochemicals. The ethanolic extract of the plant was found to possess promising antimicrobial activity when compared with the standards.


2011 ◽  
Vol 8 (s1) ◽  
pp. S282-S284 ◽  
Author(s):  
Liliwirianis N ◽  
Wan Zuraida Wan Mohd Zain ◽  
Jamaluddin Kassim ◽  
Shaikh Abdul Karim

Local herbs have many potential that may be active with antimicrobial activity. A screening was conducted with 11 species of herbs collected in UiTM Pahang Forest Reserve.Epipremnumsp.,Zingibersp.Tetracera indica, Tectaria crenata, Piper stylosum, Homalomena propinque, Goniothalamus sp., Elephantopus scaber, Mapania patiolale, Melastomasp.,Stemona tuberosa, Phullagathis rotundifolia, Thotea grandifoliaandSmilaxsp. were extracted with methanol to obtain their crude. The agar diffusion method using blank disc of 6 mm diameter were loaded with 1000 µg/mL of methanol crude and applied to the inoculate plate was used to assess the antimicrobial activity against two gram positive bacteria (Bacillus subtilisandStaphylococcus aeureus) and one gram negative bacteria (Escherichia coli). The results evaluated as the diameter of the inhibition zone of microbial growth, showed that all the extracts were active against gram-positive bacteria and gram-negative bacteria. The extract ofStemona tuberosewas found to be the most active against theE. coliandS. aeureuswhilePiper stylosumactive againstB. subtilis.


Author(s):  
Liliya BAZYLYAK ◽  
◽  
Andriy KYTSYA ◽  
Ilona KARPENKO ◽  
Olena KARPENKO ◽  
...  

Widespread use of synthetic antimicrobial drugs leads to the development of antibiotic resistance of pathogenic strains of microorganisms. Therefore, today researchers are very interested in drugs based on nanoparticles of metals, in particular silver and copper, which have antibacterial, antifungal and antiviral activity. One of the reasons for the high interest of researchers in AgNPs as an antimicrobial agent is the significantly lower toxicity of AgNPs compared to Ag+ ions. High antibacterial efficiency of silver nano¬particles is achieved due to their developed surface, which provides maximum contact with the environment. In addition, such nanoparticles are quite small and are able to penetrate cell membranes, to affect intracellular processes from within. Therefore, the aim of this work was to obtain concentrated colloidal silver solutions stabilized by citrate anions, which simultaneously provide satisfactory stabilization of colloidal silver solutions and are non-toxic, as well as to investigate the antimicrobial action of synthesized AgNPs. The solution of citrate stabilized silver nanoparticles (AgNPs) have been obtained via the reaction of reduction of silver nitrate by hydrazine in alkaline medium in the presence of sodium citrate. AgNPs were investigated using transmission electron microscopy (TEM) and UV-vis spectroscopy and the particles size and particles size distribution (PSD) were determined. It was observed that obtained AgNPs are mainly spherical shape. It was found that the mean diameter and PSD of AgNPs determined using TEM and UV-vis spectroscopy are close and equal to 14 and 5 nm and 15 and 4 nm respectively. Obtained solution was concentrated by evaporation at 70 C under reduced pressure up to achievement of AgNPs concentration equal to 200 mg/L. On the base of comparison of optical properties of initial silver sol and concentrated solution the minority of agglomeration of AgNPs was statement. At the same time AgNO3 test showed no change of UV-vis spectrum of concentrate that points on the absence of reducing agent in the solution; this fact indicate that hydrazine was eliminated from during the evaporation of initial AgNPs solution and obtained concentrate did not consist the toxic impurities. Antimicrobial activity of obtained citrate stabilised AgNPs against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacterium was tested using disk diffusion method. It was found that AgNPs shown significant bactericidal effect even at low (25 mg/L) concentration as well as some higher efficiency against Gram-negative bacterium. There was also a slightly higher antimicrobial activity of the drug against gram-negative bacteria Escherichia coli compared with gram-positive bacteria Bacillus subtilis, due to the different structure of cell walls. In particular, the walls of gram-positive bacteria consist mainly of peptidoglycan (murein), and gram-negative bacteria have cell walls with a layer of peptidoglycan and an outer membrane with a lipopolysaccharide component, which is not present in gram-positive bacteria. Based on the studies, it can be concluded that the proposed method of synthesis of AgNPs is suitable for obtaining highly concentrated silver sols. This method of synthesis is simple in hardware design, scalable, and the resulting colloidal solutions are stable and do not contain harmful impurities. Therefore, due to the high antibacterial activity of citrate-anion-stabilized AgNPs against certain types of gram-positive and gram-negative bacteria, it can be recommended for the manufacture of bactericidal drugs for biomedical purposes.


2021 ◽  
Vol 4 (2) ◽  
pp. 135-144
Author(s):  
Vilya Syafriana ◽  
Amelia Febriani ◽  
Suyatno Suyatno ◽  
Nurfitri Nurfitri ◽  
Fathin Hamida

Sempur (Dillenia suffruticosa) leaves are known as a traditional medicine for the people of Bangka-Belitung Island. The local people empirically utilize the boiled water of D. suffruticosa leaves as anti-diarrhea. However, the antimicrobial activity of the ethanol extract of D. suffruticosa leaves has not been reported. This study aims to determine the antimicrobial activity of the ethanol extract of D. suffruticosa leaves against several microorganisms: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, and Candida albicans as fungi. Extraction was carried out by maceration method with 70% ethanol, then screened for phytochemical constituents. The antimicrobial test was carried out by the disc diffusion method using Nutrient Agar (NA) for bacteria, and Sabouraud Dextrose Agar (SDA) for fungi. The results of phytochemical screening showed that the ethanol extract of D. suffruticosa leaves contained alkaloids, flavonoids, tannins, and saponins. The antimicrobial test showed that the extract of D. suffruticosa leaves could inhibit the growth of S. aureus at concentrations of 10%, 20%, and 40% were 8.35±0.05; 9.34±0.32; and 10.52±0.22, respectively. The ethanol extract of D. suffruticosa leaves could inhibit the growth of S. aureus, whereas E. coli and C. albicans did not show any activity.


Author(s):  
I. M. Uneze ◽  
J. O. Otonko ◽  
A. K. Adigun ◽  
S. J. Adebayo

The synthesis and application of nanoparticles is an important area of research that is gaining attention recently. In this recent project, we report the synthesis of silver nanoparticles, AgNP using aqueous solution of silver nitrate and Gnetum africanum leaf extract (reducing agent). The synthesis of AgNP was achieved by mixing aqueous solution of silver nitrate (70ml, 15.75mM) with a solution of Gnetum africanum leaf extract 100 ml) in a reaction flask and allowed to stand for 24 hours in a dark cupboard. A color change from light brown to yellowish brown was observed which indicated that synthesis of silver nanoparticles took place. The presence of AgNP was ascertained using UV-vis spectra analysis and absorption at 442 nm showed the presence of AgNP. The antioxidant assay of both the synthesized AgNP and the leaf extract was determined using DPPH. Antimicrobial activity was conducted using three different organisms which were Staphylococcus aureus, Escherichia coli and Pseudomonas respectively. The antioxidant results using DPPH scavenging ability of AgNp showed that at concentrations of 2mg/ml,1mg/ml and 0.1mg/ml, the percentage inhibition  of  DPPH  by AgNp was 61.69, 53.06 and 38.31 respectively and that of Gnetum africanum leaf extract was 81.32, 78.49, and 58.29 respectively at the same concentrations using Ascorbic acid as a standard. The antimicrobial activity of both the synthesized AgNps and Gnetum Africanum Leaf extract using one gram positive bacteria (Staphylococcus aureus) and two gram negative bacteria (Escherichia coli and Pseudomonas) revealed that the synthesized AgNps showed lesser activity than Gnetumafricanum leaf extract for both the gram positive bacteria (Staphylococcus aureus) and gram negative bacteria (Pseudomonas) and (Escherichia coli). From the above findings, it can be observed that Gnetum Africanum Leaf extract reduced Ag+ to Ag0 and also both the synthesized AgNps and the Gnetum Africanum Leaf extract showed reasonable antioxidant activity against DPPH and antimicrobial activity against the tested microorganisms. This implied that both samples have medicinal values.


Sign in / Sign up

Export Citation Format

Share Document