scholarly journals H3K9me2 genome-wide distribution in the holocentric insect Spodoptera frugiperda (Lepidoptera: Noctuidae)

2021 ◽  
Author(s):  
Sandra NHIM ◽  
Sylvie GIMENEZ ◽  
Rima NAIT SAIDI ◽  
Dany Severac ◽  
Kiwoong Nam ◽  
...  

Eukaryotic genomes are packaged by Histone proteins in a structure called chromatin. There are different chromatin types. Euchromatin is typically associated with decondensed, transcriptionally active regions and heterochromatin to more condensed regions of the chromosomes. Methylation of Lysine 9 of Histone H3 (H3K9me) is a conserved biochemical marker of heterochromatin. In many organisms, heterochromatin is usually localized at telomeric as well as pericentromeric regions but can also be found at interstitial chromosomal loci. This distribution may vary in different species depending on their general chromosomal organization. Holocentric species such as Spodoptera frugiperda (Lepidoptera: Noctuidae) possess dispersed centromeres instead of a monocentric one and thus no observable pericentromeric compartment. To identify the localization of heterochromatin in such species we performed ChIP-Seq experiments and analyzed the distribution of the heterochromatin marker H3K9me2 in the Sf9 cell line and whole 4th instar larvae (L4) in relation to RNA-Seq data. In both samples we measured an enrichment of H3K9me2 at the (sub) telomeres, rDNA loci, and satellite DNA sequences, which could represent dispersed centromeric regions. We also observed that density of H3K9me2 is positively correlated with transposable elements and protein-coding genes. But contrary to most model organisms, H3K9me2 density is not correlated with transcriptional repression. This is the first genome-wide ChIP-Seq analysis conducted in S. frugiperda for H3K9me2. Compared to model organisms, this mark is found in expected chromosomal compartments such as rDNA and telomeres. However, it is also localized at numerous dispersed regions, instead of the well described large pericentromeric domains, indicating that H3K9me2 might not represent a classical heterochromatin marker in Lepidoptera.

Genomics ◽  
2021 ◽  
Author(s):  
Sandra Nhim ◽  
Sylvie Gimenez ◽  
Rima Nait-Saidi ◽  
Dany Severac ◽  
Kiwoong Nam ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen R. Mifsud ◽  
Clare L. M. Kennedy ◽  
Silvia Salatino ◽  
Eshita Sharma ◽  
Emily M. Price ◽  
...  

AbstractGlucocorticoid hormones (GCs) — acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) — are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Santiago Martínez-Calvillo ◽  
Juan C. Vizuet-de-Rueda ◽  
Luis E. Florencio-Martínez ◽  
Rebeca G. Manning-Cela ◽  
Elisa E. Figueroa-Angulo

The parasitesLeishmaniaspp.,Trypanosoma brucei,andTrypanosoma cruziare the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids.In silicoanalyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.


2015 ◽  
Vol 9S4 ◽  
pp. BBI.S29334 ◽  
Author(s):  
Jessica P. Hekman ◽  
Jennifer L Johnson ◽  
Anna V. Kukekova

Domesticated species occupy a special place in the human world due to their economic and cultural value. In the era of genomic research, domesticated species provide unique advantages for investigation of diseases and complex phenotypes. RNA sequencing, or RNA-seq, has recently emerged as a new approach for studying transcriptional activity of the whole genome, changing the focus from individual genes to gene networks. RNA-seq analysis in domesticated species may complement genome-wide association studies of complex traits with economic importance or direct relevance to biomedical research. However, RNA-seq studies are more challenging in domesticated species than in model organisms. These challenges are at least in part associated with the lack of quality genome assemblies for some domesticated species and the absence of genome assemblies for others. In this review, we discuss strategies for analyzing RNA-seq data, focusing particularly on questions and examples relevant to domesticated species.


2017 ◽  
Author(s):  
William M. Brandler ◽  
Danny Antaki ◽  
Madhusudan Gujral ◽  
Morgan L. Kleiber ◽  
Michelle S. Maile ◽  
...  

AbstractThe genetic architecture of autism spectrum disorder (ASD) is known to consist of contributions from gene-disrupting de novo mutations and common variants of modest effect. We hypothesize that the unexplained heritability of ASD also includes rare inherited variants with intermediate effects. We investigated the genome-wide distribution and functional impact of structural variants (SVs) through whole genome analysis (≥30X coverage) of 3,169 subjects from 829 families affected by ASD. Genes that are intolerant to inactivating variants in the exome aggregation consortium (ExAC) were depleted for SVs in parents, specifically within fetal-brain promoters, UTRs and exons. Rare paternally-inherited SVs that disrupt promoters or UTRs were over-transmitted to probands (P = 0.0013) and not to their typically-developing siblings. Recurrent functional noncoding deletions implicate the gene LEO1 in ASD. Protein-coding SVs were also associated with ASD (P = 0.0025). Our results establish that rare inherited SVs predispose children to ASD, with differing contributions from each parent.


2010 ◽  
Vol 41 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Rory Johnson ◽  
Nadine Richter ◽  
Ralf Jauch ◽  
Philip M. Gaughwin ◽  
Chiara Zuccato ◽  
...  

In the neurons of Huntington's disease (HD) patients, gene regulatory networks are disrupted by aberrant nuclear localization of the master transcriptional repressor REST. Emerging evidence suggests that, in addition to protein-coding genes, noncoding RNAs (ncRNAs) may also contribute to neurodegenerative processes. To discover ncRNAs that are involved in HD, we screened genome-wide data for novel, noncoding targets of REST. This identified human accelerated region 1 (HAR1), a rapidly evolving cis-antisense locus that is specifically transcribed in the nervous system. We show that REST is targeted to the HAR1 locus by specific DNA regulatory motifs, resulting in potent transcriptional repression. Consistent with other REST target genes, HAR1 levels are significantly lower in the striatum of HD patients compared with unaffected individuals. These data represent further evidence that noncoding gene expression changes accompany neurodegeneration in Huntington's disease.


2021 ◽  
Author(s):  
Juexiao Zhou ◽  
Bin Zhang ◽  
Haoyang Li ◽  
Longxi Zhou ◽  
Zhongxiao Li ◽  
...  

The accurate annotation of TSSs and their usage is critical for the mechanistic understanding of gene regulation under different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner. Various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these tools have drastic false positive predictions when applied on the genome-scale. Here, we present DeeReCT-TSS, a deep-learning-based method that is capable of TSSs identification across the whole genome based on DNA sequences and conventional RNA-seq data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous transcription start site (TSS) annotation on 10 cell types, which enables the identification of cell-type-specific TSS. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets from the ENCODE project by correlating our predicted TSSs with experimentally defined TSS chromatin states.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Junliang Yin ◽  
Jiahui Yan ◽  
Lu Hou ◽  
Liling Jiang ◽  
Wenrong Xian ◽  
...  

Abstract Background As a popular and valuable technique, grafting is widely used to protect against soil-borne diseases and nematodes in vegetable production. Growing evidences have revealed that long intergenic ncRNAs (lincRNAs) are strictly regulated and play essential roles in plants development and stress responses. Nevertheless, genome-wide identification and function deciphering of pepper lincRNAs, especially for their roles in improving grafting pepper resistance to Phytophthora capsici is largely unknown. Results In this study, RNA-seq data of grafting and control pepper plants with or without P. capsici inoculation were used to identify lincRNAs. In total, 2,388 reliable lincRNAs were identified. They were relatively longer and contained few exons than protein-coding genes. Similar to coding genes, lincRNAs had higher densities in euchromatin regions; and longer chromosome transcribed more lincRNAs. Expression pattern profiling suggested that lincRNAs commonly had lower expression than mRNAs. Totally, 607 differentially expressed lincRNAs (DE-lincRANs) were identified, of which 172 were found between P. capsici resistance grafting pepper sample GR and susceptible sample LDS. The neighboring genes of DE-lincRNAs and miRNAs competitively sponged by DE-lincRNAs were identified. Subsequently, the expression level of DE-lincRNAs was further confirmed by qRT-PCR and regulation patterns between DE-lincRNAs and neighboring mRNAs were also validated. Function annotation revealed that DE-lincRNAs increased the resistance of grafting prepper to P. capsici by modulating the expression of disease-defense related genes through cis-regulating and/or lincRNA-miRNA-mRNA interaction networks. Conclusions This study identified pepper lincRNAs and suggested their potential roles in increasing the resistance level of grafting pepper to P. capsici.


Author(s):  
Nina Moravčíková ◽  
Radovan Kasarda ◽  
Ondrej Kadlečík ◽  
Anna Trakovická ◽  
Marko Halo ◽  
...  

The aim of this study was to analyse the genome-wide distribution of runs of homozygosity (ROH) segments in the genome of Norik of Muran horse and to identify the regions under strong selection pressure. Overall, 25 animals genotyped by the GGP Equine70k chip were included in the study. After SNP pruning, 54479 SNPs (75.72%) covering 2.25 Gb of the autosomal genome were retained for scan of ROH segments distribution. The ROHs were present in the genome of all animals and covered in average 13.17% (295.29 Mb) of autosomal genome expressed by the SNP loci. The highest number of ROHs was identified on autosome 1 (404), while the lowest proportion of autosome residing in ROH showed ECA31 (38). The footprints of selection, characterized by SNPs with extreme frequency in ROHs across specific genomic regions, were defined by the top 0.01 percentile of signals. Overall, nine genomic regions located on seven autosomes (3, 6, 9, 11, 15, 23) were identified. The strongest signal of selection showed three autosomes ECA3, ECA9 and ECA11. The protein-coding genes located within these regions suggested that the identified footprints of selection are most likely consequences of intensive breeding for traits of interest during the grading-up process of the Norik of Muran horse.


Sign in / Sign up

Export Citation Format

Share Document