scholarly journals Monoacylglycerol disrupts Golgi structure and perilipin 2 association with lipid droplets

2021 ◽  
Author(s):  
Lydia-Ann L.S. Harris ◽  
James R Skinner ◽  
Trevor M Shew ◽  
Nada A Abumrad ◽  
Nathan Wolins

The two major products of intestinal triacylglycerol digestion and lipoprotein lipolysis are monoacylglycerols (MAG) and fatty acids. In the gut, these products are taken up by enterocytes and packaged into perilipin-coated cytosolic lipid droplets and then secreted as chylomicrons. We observed that fat feeding or intragastric administration of triacylglycerol oil caused the enterocyte Golgi to fragment into submicron puncta dispersed throughout the cytosol. Further, this apparent Golgi dispersion was also observed in cultured fibroblasts after treatment with fat (cream) and pancreatic lipase, but not when treated with deactivated lipase. We therefore hypothesized that a hydrolytic fat product, specifically monoacylglycerols, fatty acids or a combination of these molecules can trigger Golgi fragmentation. Disruption of coatomer function is known to cause Golgi to fuse with the ER, and blocks perilipin 2 delivery to lipid droplets. Thus, we assessed the effects of MAG on coatomer distribution, Golgi structure and perilipin 2 localization. We found that MAG, but not fatty acids, dispersed coatomer from the Golgi, fragmented the Golgi and caused perilipin 2 to accumulate on cellular membranes. Thus, our findings suggest that monoacylglycerol production during digestion disperses the Golgi, possibly by altering coatomer function, which may regulate metabolite transport between the ER and Golgi.

Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


2010 ◽  
Vol 22 (8) ◽  
pp. 1262 ◽  
Author(s):  
Xing Yang ◽  
Kylie R. Dunning ◽  
Linda L.-Y. Wu ◽  
Theresa E. Hickey ◽  
Robert J. Norman ◽  
...  

Lipid droplet proteins regulate the storage and utilisation of intracellular lipids. Evidence is emerging that oocyte lipid utilisation impacts embryo development, but lipid droplet proteins have not been studied in oocytes. The aim of the present study was to characterise the size and localisation of lipid droplets in mouse oocytes during the periovulatory period and to identify lipid droplet proteins as potential biomarkers of oocyte lipid content. Oocyte lipid droplets, visualised using a novel method of staining cumulus–oocyte complexes (COCs) with BODIPY 493/503, were small and diffuse in oocytes of preovulatory COCs, but larger and more centrally located after maturation in response to ovulatory human chorionic gonadotrophin (hCG) in vivo, or FSH + epidermal growth factor in vitro. Lipid droplet proteins Perilipin, Perilipin-2, cell death-inducing DNA fragmentation factor 45-like effector (CIDE)-A and CIDE-B were detected in the mouse ovary by immunohistochemistry, but only Perilipin-2 was associated with lipid droplets in the oocyte. In COCs, Perilipin-2 mRNA and protein increased in response to ovulatory hCG. IVM failed to induce Perilipin-2 mRNA, yet oocyte lipid content was increased in this context, indicating that Perilipin-2 is not necessarily reflective of relative oocyte lipid content. Thus, Perilipin-2 is a lipid droplet protein in oocytes and its induction in the COC concurrent with dynamic reorganisation of lipid droplets suggests marked changes in lipid utilisation during oocyte maturation.


2019 ◽  
Vol 30 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Jie Li ◽  
Danming Tang ◽  
Stephen C. Ireland ◽  
Yanzhuang Wang

In mammalian cells, the Golgi reassembly stacking protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a cochaperone of Heat shock cognate 71-kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its cochaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.


1993 ◽  
Vol 75 (4) ◽  
pp. 1513-1518 ◽  
Author(s):  
M. D. Vukovich ◽  
D. L. Costill ◽  
M. S. Hickey ◽  
S. W. Trappe ◽  
K. J. Cole ◽  
...  

Elevated plasma fatty acids have been shown to spare muscle glycogen during exercise. However, on the basis of recent findings, the saturation of fatty acids may influence this response. The purpose of this study was to determine whether saturated or unsaturated fatty acids affected muscle glycogenolysis to varying degrees during cycle exercise. Five healthy men completed three 60-min cycle ergometer trials (EX) at approximately 70% maximal O2 uptake (VO2max). Triglyceride levels were elevated by a fat feeding (FF) composed of 90% saturated fatty acids (heavy whipping cream, 90 g) or by the infusion of Intralipid (IL; Clintec Nutrition; 45 ml/h of 20% IL, 9.0 g), which was 85% unsaturated. A control trial (CON) consisted of a light breakfast (43 g carbohydrate and 1 g fat). Heparin (2,000 U) was administered 15 min before EX in FF and IL trials, resulting in one- and threefold increases in free fatty acid (FFA) levels in IL and FF, respectively. Pre-EX muscle glycogen did not differ. The utilization of muscle glycogen during 60 min of EX was less (P < 0.05) during the FF (60.0 +/- 5.2 mmol/kg wet wt) and IL (58.6 +/- 6.2 mmol/kg wet wt) compared with CON (81.8 +/- 7.5 mmol/kg wet wt). There was no difference between FF and IL in the amount of glycogen utilized. Serum triglyceride levels were greater (P < 0.05) at preheparin in FF (1.58 +/- 0.37 mmol/l) and IL (0.98 +/- 0.13 mmol/l) compared with CON (0.47 +/- 0.14 mmol/l).(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ekaterina Fock ◽  
Vera Bachteeva ◽  
Elena Lavrova ◽  
Rimma Parnova

The effect of bacterial lipopolysaccharide (LPS) on eukaryotic cell could be accompanied by a significant metabolic shift that includes accumulation of triacylglycerol (TAG) in lipid droplets (LD), ubiquitous organelles associated with fatty acid storage, energy regulation and demonstrated tight spatial and functional connections with mitochondria. The impairment of mitochondrial activity under pathological stimuli has been shown to provoke TAG storage and LD biogenesis. However the potential mechanisms that link mitochondrial disturbances and TAG accumulation are not completely understood. We hypothesize that mitochondrial ROS (mROS) may play a role of a trigger leading to subsequent accumulation of intracellular TAG and LD in response to a bacterial stimulus. Using isolated epithelial cells from the frog urinary bladder, we showed that LPS decreased fatty acids oxidation, enhanced TAG deposition, and promoted LD formation. LPS treatment did not affect the mitochondrial membrane potential but increased cellular ROS production and led to impairment of mitochondrial function as revealed by decreased ATP production and a reduced maximal oxygen consumption rate (OCR) and OCR directed at ATP turnover. The mitochondrial-targeted antioxidant MitoQ at a dose of 25 nM did not prevent LPS-induced alterations in cellular respiration, but, in contrast to nonmitochondrial antioxidant α-tocopherol, reduced the effect of LPS on the generation of ROS, restored the LPS-induced decline of fatty acids oxidation, and prevented accumulation of TAG and LD biogenesis. The data obtained indicate the key signaling role of mROS in the lipid metabolic shift that occurs under the impact of a bacterial pathogen in epithelial cells.


2019 ◽  
Vol 218 (4) ◽  
pp. 1319-1334 ◽  
Author(s):  
Hanaa Hariri ◽  
Natalie Speer ◽  
Jade Bowerman ◽  
Sean Rogers ◽  
Gang Fu ◽  
...  

Lipid droplets (LDs) serve as cytoplasmic reservoirs for energy-rich fatty acids (FAs) stored in the form of triacylglycerides (TAGs). During nutrient stress, yeast LDs cluster adjacent to the vacuole/lysosome, but how this LD accumulation is coordinated remains poorly understood. The ER protein Mdm1 is a molecular tether that plays a role in clustering LDs during nutrient depletion, but its mechanism of function remains unknown. Here, we show that Mdm1 associates with LDs through its hydrophobic N-terminal region, which is sufficient to demarcate sites for LD budding. Mdm1 binds FAs via its Phox-associated domain and coenriches with fatty acyl–coenzyme A ligase Faa1 at LD bud sites. Consistent with this, loss of MDM1 perturbs free FA activation and Dga1-dependent synthesis of TAGs, elevating the cellular FA level, which perturbs ER morphology and sensitizes yeast to FA-induced lipotoxicity. We propose that Mdm1 coordinates FA activation adjacent to the vacuole to promote LD production in response to stress, thus maintaining ER homeostasis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alexandre Umpierrez Amaral ◽  
Moacir Wajner

Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.


Sign in / Sign up

Export Citation Format

Share Document