scholarly journals The amplitude of fNIRS hemodynamic response in the visual cortex unmasks autistic traits in typically developing children

2021 ◽  
Author(s):  
Raffaele M Mazziotti ◽  
Elena Scaffei ◽  
Eugenia Conti ◽  
Viviana Marchi ◽  
Riccardo Rizzi ◽  
...  

Autistic traits represent a continuum dimension across the population, with autism spectrum disorder (ASD) being the extreme end of the distribution. Accumulating evidence shows that neuroanatomical and neurofunctional profiles described in relatives of ASD individuals reflect an intermediate neurobiological pattern between the clinical population and healthy controls. This suggests that quantitative measures detecting autistic traits in the general population represent potential candidates for the development of biomarkers identifying early pathophysiological processes associated with ASD. Functional near-infrared spectroscopy (fNIRS) has been extensively employed to investigate neural development and function. In contrast, the potential of fNIRS to define reliable biomarkers of brain activity has been barely explored. Features of non-invasiveness, portability, ease of administration and low-operating costs make fNIRS a suitable instrument to assess brain function for differential diagnosis, follow-up, analysis of treatment outcomes and personalized medicine in several neurological conditions. Here, we introduce a novel standardized procedure with high entertaining value to measure hemodynamic responses (HDR) in the occipital cortex of adult subjects and children. We found that the variability of evoked HDR correlates with the autistic traits of children, assessed by the Autism-Spectrum Quotient. Interestingly, HDR amplitude was especially linked to social and communication features, representing the core symptoms of ASD. These findings establish a quick and easy strategy for measuring visually-evoked cortical activity with fNIRS that optimize the compliance of young subjects, setting the background for testing the diagnostic value of fNIRS visual measurements in the ASD clinical population.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nicolle Robertson ◽  
Adam Qureshi ◽  
Rebecca L. Monk

Purpose This study aims to represent a first attempt to examine in a non-clinical population the interplay between social engagement, executive function (EF) and theory of mind (ToM) within a social motivation theory framework. Design/methodology/approach A total of 170 participants (135 female; mean age = 19.01 and standard deviation = 1.27) completed measures of ToM (Faux Pas task), autistic traits (Autism Spectrum Quotient), social engagement (reward dependence subscale of the Temperament and Character Inventory), sociability and EF (both subscales of the Adult Temperament Questionnaire). Findings Path analyses found that EF, sociability and social engagement were negatively associated with autistic traits both directly and indirectly. Results indicate that EF may impact sociability and social engagement and their interaction may relate to the degree of autistic traits shown in a typical sample. However, ToM (as measured by the Faux Pas test) was not related to any of the other variables. Originality/value Sociability, social engagement and effortful control deficits may be linked to higher levels of autistic traits. These factors appear to form a hierarchy of factors underpinning autism spectrum disorder, with EF contributing to all aspects, followed by sociability and social engagement at a higher level. Future research examining in clinical populations the utility of a more integrated model of social motivation that incorporates EF appears warranted.


2019 ◽  
Vol 12 (06) ◽  
pp. 1930012 ◽  
Author(s):  
Keum-Shik Hong ◽  
M. Atif Yaqub

Functional near-infrared spectroscopy (fNIRS), a growing neuroimaging modality, has been utilized over the past few decades to understand the neuronal behavior in the brain. The technique has been used to assess the brain hemodynamics of impaired cohorts as well as able-bodied. Neuroimaging is a critical technique for patients with impaired cognitive or motor behaviors. The portable nature of the fNIRS system is suitable for frequent monitoring of the patients who exhibit impaired brain activity. This study comprehensively reviews brain-impaired patients: The studies involving patient populations and the diseases discussed in more than 10 works are included. Eleven diseases examined in this paper include autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, depressive disorders, anxiety and panic disorder, schizophrenia, mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease, stroke, and traumatic brain injury. For each disease, the tasks used for examination, fNIRS variables, and significant findings on the impairment are discussed. The channel configurations and the regions of interest are also outlined. Detecting the occurrence of symptoms at an earlier stage is vital for better rehabilitation and faster recovery. This paper illustrates the usability of fNIRS for early detection of impairment and the usefulness in monitoring the rehabilitation process. Finally, the limitations of the current fNIRS systems (i.e., nonexistence of a standard method and the lack of well-established features for classification) and future research directions are discussed. The authors hope that the findings in this paper would lead to advanced breakthrough discoveries in the fNIRS field in the future.


2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Thien Nguyen ◽  
Helga O. Miguel ◽  
Emma E. Condy ◽  
Soongho Park ◽  
Amir Gandjbakhche

Mirror neuron network (MNN) is associated with one’s ability to recognize and interpret others’ actions and emotions and has a crucial role in cognition, perception, and social interaction. MNN connectivity and its relation to social attributes, such as autistic traits have not been thoroughly examined. This study aimed to investigate functional connectivity in the MNN and assess relationship between MNN connectivity and subclinical autistic traits in neurotypical adults. Hemodynamic responses, including oxy- and deoxy-hemoglobin were measured in the central and parietal cortex of 30 healthy participants using a 24-channel functional Near-Infrared spectroscopy (fNIRS) system during a live action-observation and action-execution task. Functional connectivity was derived from oxy-hemoglobin data. Connections with significantly greater connectivity in both tasks were assigned to MNN connectivity. Correlation between connectivity and autistic traits were performed using Pearson correlation. Connections within the right precentral, right supramarginal, left inferior parietal, left postcentral, and between left supramarginal-left angular regions were identified as MNN connections. In addition, individuals with higher subclinical autistic traits present higher connectivity in both action-execution and action-observation conditions. Positive correlation between MNN connectivity and subclinical autistic traits can be used in future studies to investigate MNN in a developing population with autism spectrum disorder.


2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


Author(s):  
Stian Orm ◽  
Ella Holt Holmberg ◽  
Paul L. Harris ◽  
Maria Nunez ◽  
Francisco Pons

Abstract Objectives First, to see whether previous studies showing a limited capacity to spontaneously evoke the past and the future of a present moment (diachronic tendency) and a prevalence of mental images over inner speech (thinking style) in individuals with autism spectrum disorder could be replicated in individuals belonging to the broader autism phenotype. Second, to test the hypothesis that individuals thinking with mental images have a more limited diachronic tendency compared with individuals thinking with inner speech. Methods Adults (N = 309, Mage = 31.5 years, 76% women) with at least a high school degree were assessed with the Autism Spectrum Quotient, a test of diachronic tendency comprising four pictures varying in social interactivity and dynamicity, and a thinking style scale comprising three items representing three different everyday situations. Results The results showed that adults with many autistic traits have a limited diachronic tendency but only when the situation is socially interactive and dynamic, think more in mental images than individuals with no or few autistic traits but nevertheless still think more with inner speech than with mental images, and the more the participants reported thinking in inner speech, the more they evoked past and future events when describing a socially interactive and dynamic situation. Conclusions More autistic traits are associated with a limited diachronic tendency in socially interactive and dynamic situations and more thinking in mental images, and thinking style could be one of the determinants of diachronic tendency in socially interactive and dynamic situations.


2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael C. W. English ◽  
Gilles E. Gignac ◽  
Troy A. W. Visser ◽  
Andrew J. O. Whitehouse ◽  
James T. Enns ◽  
...  

Abstract Background Traits and characteristics qualitatively similar to those seen in diagnosed autism spectrum disorder can be found to varying degrees in the general population. To measure these traits and facilitate their use in autism research, several questionnaires have been developed that provide broad measures of autistic traits [e.g. Autism-Spectrum Quotient (AQ), Broad Autism Phenotype Questionnaire (BAPQ)]. However, since their development, our understanding of autism has grown considerably, and it is arguable that existing measures do not provide an ideal representation of the trait dimensions currently associated with autism. Our aim was to create a new measure of autistic traits that reflects our current understanding of autism, the Comprehensive Autism Trait Inventory (CATI). Methods In Study 1, 107 pilot items were administered to 1119 individuals in the general population and exploratory factor analysis of responses used to create the 42-item CATI comprising six subscales: Social Interactions, Communication, Social Camouflage, Repetitive Behaviours, Cognitive Rigidity, and Sensory Sensitivity. In Study 2, the CATI was administered to 1068 new individuals and confirmatory factor analysis used to verify the factor structure. The AQ and BAPQ were administered to validate the CATI, and additional autistic participants were recruited to compare the predictive ability of the measures. In Study 3, to validate the CATI subscales, the CATI was administered to 195 new individuals along with existing valid measures qualitatively similar to each CATI subscale. Results The CATI showed convergent validity at both the total-scale (r ≥ .79) and subscale level (r ≥ .68). The CATI also showed superior internal reliability for total-scale scores (α = .95) relative to the AQ (α = .90) and BAPQ (α = .94), consistently high reliability for subscales (α > .81), greater predictive ability for classifying autism (Youden’s Index = .62 vs .56–.59), and demonstrated measurement invariance for sex. Limitations Analyses of predictive ability for classifying autism depended upon self-reported diagnosis or identification of autism. The autistic sample was not large enough to test measurement invariance of autism diagnosis. Conclusions The CATI is a reliable and economical new measure that provides observations across a wide range of trait dimensions associated with autism, potentially precluding the need to administer multiple measures, and to our knowledge, the CATI is also the first broad measure of autistic traits to have dedicated subscales for social camouflage and sensory sensitivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Pinti ◽  
M. F. Siddiqui ◽  
A. D. Levy ◽  
E. J. H. Jones ◽  
Ilias Tachtsidis

AbstractWith the rapid growth of optical-based neuroimaging to explore human brain functioning, our research group has been developing broadband Near Infrared Spectroscopy (bNIRS) instruments, a technological extension to functional Near Infrared Spectroscopy (fNIRS). bNIRS has the unique capacity of monitoring brain haemodynamics/oxygenation (measuring oxygenated and deoxygenated haemoglobin), and metabolism (measuring the changes in the redox state of cytochrome-c-oxidase). When combined with electroencephalography (EEG), bNIRS provides a unique neuromonitoring platform to explore neurovascular coupling mechanisms. In this paper, we present a novel pipeline for the integrated analysis of bNIRS and EEG signals, and demonstrate its use on multi-channel bNIRS data recorded with concurrent EEG on healthy adults during a visual stimulation task. We introduce the use of the Finite Impulse Response functions within the General Linear Model for bNIRS and show its feasibility to statistically localize the haemodynamic and metabolic activity in the occipital cortex. Moreover, our results suggest that the fusion of haemodynamic and metabolic measures unveils additional information on brain functioning over haemodynamic imaging alone. The cross-correlation-based analysis of interrelationships between electrical (EEG) and haemodynamic/metabolic (bNIRS) activity revealed that the bNIRS metabolic signal offers a unique marker of brain activity, being more closely coupled to the neuronal EEG response.


Sign in / Sign up

Export Citation Format

Share Document