scholarly journals Trial-wise exposure to visual appetitive cues increases physiological arousal but not temporal discounting.

2021 ◽  
Author(s):  
Kilian Knauth ◽  
Jan Peters

Humans and many animals devalue future rewards as a function of time (temporal discounting). Increased discounting has been linked to various psychiatric conditions, including substance-use-disorders, behavioral addictions and obesity. Despite its high intra-individual stability, temporal discounting is partly under contextual control. One prominent manipulation that has been linked to increases in discounting is the exposure to highly arousing appetitive cues. However, results from trial-wise cue exposure studies appear highly mixed, and changes in physiological arousal were not adequately controlled. Here we tested the effects of appetitive (erotic), aversive and neutral visual cues on temporal discounting in thirty-five healthy male participants. The contribution of single-trial physiological arousal was assessed using comprehensive monitoring of autonomic activity (pupil size, heart rate, electrodermal activity). Physiological arousal was elevated following aversive and in particular erotic cues. In contrast to our pre-registered hypothesis, if anything, we observed decreased temporal discounting following erotic cue exposure. Aversive cues tended to increase decision noise. Computational modeling revealed that trial-wise arousal only accounted for minor variance over and above aversive and erotic condition effects, arguing against a general effect of physiological arousal on temporal discounting.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7869
Author(s):  
Anne Horvers ◽  
Natasha Tombeng ◽  
Tibor Bosse ◽  
Ard W. Lazonder ◽  
Inge Molenaar

There is a strong increase in the use of devices that measure physiological arousal through electrodermal activity (EDA). Although there is a long tradition of studying emotions during learning, researchers have only recently started to use EDA to measure emotions in the context of education and learning. This systematic review aimed to provide insight into how EDA is currently used in these settings. The review aimed to investigate the methodological aspects of EDA measures in educational research and synthesize existing empirical evidence on the relation of physiological arousal, as measured by EDA, with learning outcomes and learning processes. The methodological results pointed to considerable variation in the usage of EDA in educational research and indicated that few implicit standards exist. Results regarding learning revealed inconsistent associations between physiological arousal and learning outcomes, which seem mainly due to underlying methodological differences. Furthermore, EDA frequently fluctuated during different stages of the learning process. Compared to this unimodal approach, multimodal designs provide the potential to better understand these fluctuations at critical moments. Overall, this review signals a clear need for explicit guidelines and standards for EDA processing in educational research in order to build a more profound understanding of the role of physiological arousal during learning.


2021 ◽  
Author(s):  
Luca Rene Bruder ◽  
Ben Wagner ◽  
David Mathar ◽  
Jan Peters

High-performance virtual reality (VR) technology has opened new possibilities for the examination of the reactivity towards addiction-related cues (cue-reactivity) in addiction. In this preregistered study (https://osf.io/4mrta), we investigated the subjective, physiological, and behavioral effects of gambling-related VR environment exposure in participants reporting frequent or pathological gambling (n=31) as well as non-gambling controls (n=29). On two separate days, participants explored two rich and navigable VR-environments (neutral: cafe vs. gambling-related: casino/sports-betting facility), while electrodermal activity and heart rate were continuously measured using remote sensors. Within VR, participants performed a temporal discounting task and a sequential decision-making task designed to assess model-based and model-free contributions to behavior. Replicating previous findings, we found strong evidence for increased temporal discounting and reduced model-based control in participants reporting frequent or pathological gambling. Although VR gambling environment exposure increased subjective craving, there was if anything inconclusive evidence for further behavioral or physiological effects. Instead, VR exposure substantially increased physiological arousal (electrodermal activity), across groups and conditions. VR is a promising tool for the investigation of context effects in addiction, but some caution is warranted since effects of real gambling environments might not generally replicate in VR. Future studies should delineate how factors such as cognitive load and ecological validity could be balanced to create a more naturalistic VR experience.


2019 ◽  
Author(s):  
Vincent B. McGinty

ABSTRACTNeural representations of value underlie many behaviors that are crucial for survival. Previously, we found that value representations in primate orbitofrontal cortex (OFC) are modulated by attention, specifically, by overt shifts of gaze towards or away from reward-associated visual cues (McGinty et al., 2016). Here, we investigate the influence of overt attention on behavior, by asking how gaze shifts correlate with reward anticipatory responses, and whether activity in OFC mediates this correlation. Macaque monkeys viewed Pavlovian-conditioned appetitive cues on a visual display, while the fraction of time they spent looking towards or away from the cues was measured using an eye tracker. Also measured during cue presentation were the monkeys’ reward anticipation, indicated by conditioned licking responses (CRs), and single neuron activity in OFC. In general, gaze allocation predicted subsequent licking responses: the longer the monkeys spent looking at a cue at a given time point in a trial, the more likely they were to produce an anticipatory CR later in that trial, as if the subjective value of the cue were increased. To address neural mechanisms, mediation analysis measured the extent to which the gaze-CR correlation could be statistically explained by the concurrently recorded firing of single OFC neurons. The resulting mediation effects were indistinguishable from chance. Therefore, while overt attention may increase the subjective value of reward-associated cues (as revealed by anticipatory behaviors), the underlying mechanism remains unknown, as does the functional significance of gaze-driven modulation of OFC value signals.


2001 ◽  
Vol 91 (5) ◽  
pp. 2093-2101 ◽  
Author(s):  
J. Timothy Noteboom ◽  
Kerry R. Barnholt ◽  
Roger M. Enoka

The purpose of this study was to determine the effect of trait anxiety and stressor intensity on arousal and motor performance during a pinch task. We examined the steadiness of a precision task in the presence and absence of an imposed stressor on subjects with moderate and low trait anxiety. Subjects with the 26 highest and 14 lowest anxiety scores were assigned to one of three groups: a control group (5 women, 5 men), a moderate-anxiety group (8 women, 8 men), or a low-anxiety group (7 women, 7 men). Subjects in the anxiety groups received electric shocks and experienced significant increases in cognitive and physiological arousal compared with baseline and control subjects, especially subjects in the moderate-anxiety group. Heart rate, systolic blood pressure, and electrodermal activity were elevated during the stressor, whereas diastolic blood pressure was unchanged. Cognitive and physiological arousal tended to increase with stressor intensity and was accompanied by changes in steadiness. Although steadiness was markedly reduced with the highest intensity of shock, the average electromyogram activity was unaffected by the stressor. These findings indicate that the increase in arousal and the impairment of steadiness increased with trait anxiety and with the intensity of the noxious stimulus.


2009 ◽  
Vol 101 (2) ◽  
pp. 898-911 ◽  
Author(s):  
Sebastien Bouret ◽  
Barry J. Richmond

Noradrenaline is released throughout the forebrain from locus coeruleus (LC) projections in close temporal proximity to emotional and goal-directed events. To examine interactive influences of these processes on LC neuronal activity, we used a task where Pavlovian and operant processes vary and can be easily identified. We recorded 69 single LC neurons from two monkeys performing a task where cues indicate the progression through schedules of one, two, or three operant trials. Pavlovian responses and phasic LC activations occur following the appearance of conditioned visual cues (54/69 neurons), especially those at the beginning of new schedules, whether the current trial will be rewarded (single trial schedule) or not (2 or 3 trial schedules), and after visual imperative signals eliciting the operant response (64/69 neurons), whether the current trial will be rewarded or not. The modulation of LC responses seems to be relatively independent of attention or motivation, because the responses do not covary with operant performance in the task. The magnitude of LC responses across the schedules varied in close relation to the intensity of Pavlovian behavior but these responses were also modulated by operant processes. Our conclusion is that LC activation occurs when task-relevant stimuli evoke a conditioned instinctive (Pavlovian) response, with the strength of the activation also being modulated by goal-directed processes. Thus locus coeruleus neurons broadcast information about stimulus-elicited primitive and goal-directed behaviors to forebrain structures important for executive functions and emotions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elisa Rigosi ◽  
David C. O’Carroll

Cholinergic pesticides, such as the neonicotinoid imidacloprid, are the most important insecticides used for plant protection worldwide. In recent decades, concerns have been raised about side effects on non-target insect species, including altered foraging behavior and navigation. Although pollinators rely on visual cues to forage and navigate their environment, the effects of neonicotinoids on visual processing have been largely overlooked. To test the effect of acute treatment with imidacloprid at known concentrations in the brain, we developed a modified electrophysiological setup that allows recordings of visually evoked responses while perfusing the brain in vivo. We obtained long-lasting recordings from direction selective wide-field, motion sensitive neurons of the hoverfly pollinator, Eristalis tenax. Neurons were treated with imidacloprid (3.9 μM, 0.39 μM or a sham control treatment using the solvent (dimethylsulfoxide) only. Exposure to a high, yet sub-lethal concentration of imidacloprid significantly alters their physiological response to motion stimuli. We observed a general effect of imidacloprid (3.9 μM) increasing spontaneous activity, reducing contrast sensitivity and giving weaker directional tuning to wide-field moving stimuli, with likely implications for errors in flight control, hovering and routing. Our electrophysiological approach reveals the robustness of the fly visual pathway against cholinergic perturbance (i.e., at 0.39 μM) but also potential threatening effects of cholinergic pesticides (i.e., evident at 3.9 μM) for the visual motion detecting system of an important pollinator.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lena Veit ◽  
Lucas Y Tian ◽  
Christian J Monroy Hernandez ◽  
Michael S Brainard

The flexible control of sequential behavior is a fundamental aspect of speech, enabling endless reordering of a limited set of learned vocal elements (syllables or words). Songbirds are phylogenetically distant from humans but share both the capacity for vocal learning and neural circuitry for vocal control that includes direct pallial-brainstem projections. Based on these similarities, we hypothesized that songbirds might likewise be able to learn flexible, moment-by-moment control over vocalizations. Here, we demonstrate that Bengalese finches (Lonchura striata domestica), which sing variable syllable sequences, can learn to rapidly modify the probability of specific sequences (e.g. ‘ab-c’ versus ‘ab-d’) in response to arbitrary visual cues. Moreover, once learned, this modulation of sequencing occurs immediately following changes in contextual cues and persists without external reinforcement. Our findings reveal a capacity in songbirds for learned contextual control over syllable sequencing that parallels human cognitive control over syllable sequencing in speech.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca R. Bruder ◽  
Lisa Scharer ◽  
Jan Peters

AbstractIn recent years the emergence of high-performance virtual reality (VR) technology has opened up new possibilities for the examination of context effects in psychological studies. The opportunity to create ecologically valid stimulation in a highly controlled lab environment is especially relevant for studies of psychiatric disorders, where it can be problematic to confront participants with certain stimuli in real life. However, before VR can be confidently applied widely it is important to establish that commonly used behavioral tasks generate reliable data within a VR surrounding. One field of research that could benefit greatly from VR-applications are studies assessing the reactivity to addiction related cues (cue-reactivity) in participants suffering from gambling disorder. Here we tested the reliability of a commonly used temporal discounting task in a novel VR set-up designed for the concurrent assessment of behavioral and psychophysiological cue-reactivity in gambling disorder. On 2 days, thirty-four healthy non-gambling participants explored two rich and navigable VR-environments (neutral: café vs. gambling-related: casino and sports-betting facility), while their electrodermal activity was measured using remote sensors. In addition, participants completed the temporal discounting task implemented in each VR environment. On a third day, participants performed the task in a standard lab testing context. We then used comprehensive computational modeling using both standard softmax and drift diffusion model (DDM) choice rules to assess the reliability of discounting model parameters assessed in VR. Test–retest reliability estimates were good to excellent for the discount rate log(k), whereas they were poor to moderate for additional DDM parameters. Differences in model parameters between standard lab testing and VR, reflecting reactivity to the different environments, were mostly numerically small and of inconclusive directionality. Finally, while exposure to VR generally increased tonic skin conductance, this effect was not modulated by the neutral versus gambling-related VR-environment. Taken together this proof-of-concept study in non-gambling participants demonstrates that temporal discounting measures obtained in VR are reliable, suggesting that VR is a promising tool for applications in computational psychiatry, including studies on cue-reactivity in addiction.


2019 ◽  
Author(s):  
Niharika Jain ◽  
Sheikh Iqbal Ahamed ◽  
Serdar Bozdag ◽  
Bridget K. Dolan ◽  
Alana J. McVey ◽  
...  

AbstractFacial expressions provide a nonverbal mechanism for social communication, a core challenge for autistic people. Little is known regarding the association between arousal, self-report of anxiety, and facial expressions among autistic adolescents. Therefore, this study investigated session-by-session facial expressions, self-report of anxiety, and physiological arousalviaElectrodermal Activity (EDA), of 12 autistic male adolescents in a didactic social skills intervention setting. The goals of this study were threefold: 1) identify physiological arousal levels (“have-it”), 2) examine if autistic adolescents’ facial expressions indicated arousal (“show-it”), and 3) determine whether autistic adolescents were self-aware of their anxiety (“know-it”). Our results showed that autistic adolescents’ self-rated anxiety was significantly associated with peaks in EDA. Both machine learning algorithms and human participant-based methods, however, had low accuracy in predicting autistic adolescents’ arousal state from facial expressions, suggesting that autistic adolescent’s facial expressions did not coincide with their arousal. Implications for understanding social communication difficulties among autistic adolescents, as well as future targets for intervention, are discussed. This project is registered with ClinicalTrials.gov, Identifier:NCT02680015.


2001 ◽  
Vol 91 (2) ◽  
pp. 821-831 ◽  
Author(s):  
J. Timothy Noteboom ◽  
Monika Fleshner ◽  
Roger M. Enoka

The purpose of this study was to determine the effect of arousal in men and women on the moment-to-moment performance of a simple motor task. We examined the control of a precision task in the presence and absence of imposed stressors. Twenty-nine subjects (14 men, 15 women; 18–44 yr) were randomly assigned to either a control group or one of two stressor groups, Mental Math or Electric Shock. Subjects presented with Math and Shock stressors, which lasted 10 min, experienced significant increases in cognitive and physiological arousal compared with baseline and control subjects. Heart rate, systolic blood pressure, and electrodermal activity were elevated 5–80% with presentation of the stressors, whereas diastolic blood pressure and salivary cortisol were unchanged. The greater levels of cognitive and physiological arousal were associated with reductions in steadiness of a pinch grip for the Shock subjects (∼130% reduction from baseline) but not for the subjects in the Math group, who experienced heightened arousal but no change in steadiness (10% reduction from baseline). Although women exhibited more of a reduction in steadiness than men, the effect was largely unrelated to the magnitude of the change in arousal.


Sign in / Sign up

Export Citation Format

Share Document