scholarly journals Presence and Stability of SARS-CoV-2 on Environmental Currency and Money Cards

2021 ◽  
Author(s):  
Colleen Newey ◽  
Abigail T Olausson ◽  
Alyssa Applegate ◽  
Ann Aubrey Reid ◽  
Richard A Robison ◽  
...  

The highly contagious nature of SARS-CoV-2 has led to several studies on the transmission of the virus. A little studied potential fomite of great concern in the community is currency, which has been shown to harbor microbial pathogens in several studies. Since the onset of the COVID-19 pandemic, many businesses in the United States have limited the use of banknotes in favor of credit cards. However, SARS-CoV-2 has shown greater stability on plastic in several studies.  Herein, the stability of SARS-CoV-2 at room temperature on banknotes, money cards and coins was investigated. In vitro studies with live virus suggested SARS-CoV-2 was highly unstable on banknotes, showing an initial rapid reduction in viable virus and no viral detection by 24 hours. In contrast, SARS-CoV-2 was far more stable on money cards with live virus detected after 48 hours. Environmental swabbing of currency and money cards on and near the campus of Brigham Young University supported these results, with no detection of SARS-CoV-2 RNA on banknotes, and a low level on money cards. No viable virus was detected on either. These preliminary results suggest that the use of money cards over banknotes in order to slow the spread of this virus may be ill-advised. These findings should be investigated further through larger environmental studies involving more locations.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


Author(s):  
Sumit Kumar Nagle ◽  
Mansi Gupta ◽  
Deepak Kumar Basedia ◽  
Dubey B.K.

Ethosomes entrapping avobenzone were prepared using cold method and the effect of varying concentration of ethanol was considered for obtaining an optimized formulation. Lecithin (2%w/w) was used as the phospholipid to provide the structure to the vesicles and propylene glycol (10%) was used as the permeating agent. The vesicles were found to be of spherical to irregular shape ranged from 1.11 µm to 1.6 µm in size. The drug entrapment in the ethosomes was studied by analyzing the unentrapped drug spectrophotometrically. The in vitro permeation study suggested that the maximum permeation in the egg membrane occurred in AET3 (0.40 mg/cm2) with 30% ethanol concentration. It was observed that only about 2% degradation occurred at room temperature and all formulations were almost stable at 8° and 4° with only 1.3% degradation of avobenzone thereby proving the stability of the developed system. The best ethosomal formulation (AET3) was incorporated into gel base to obtain sunscreen gels and the results revealed a good protection of the ethosomal gel when 2% carbopol was used as the gelling base. It could be concluded that incorporation of avobenzone in the ethosomal carrier and formulating the same as gel formulation might help in reducing the dose of avobenzone as well as improving the sunscreen efficacy (sun protection over enhanced duration).


2020 ◽  
Vol 175 (2) ◽  
pp. 210-219 ◽  
Author(s):  
John T Szilagyi ◽  
Anastasia N Freedman ◽  
Stewart L Kepper ◽  
Arjun M Keshava ◽  
Jackie T Bangma ◽  
...  

Abstract Per- and polyfluoroalkyl substances (PFAS) are used as industrial surfactants and chemical coatings for household goods such as Teflon. Despite regulatory efforts to phase out legacy PFAS, they remain detectable in drinking water throughout the United States. This is due to the stability of legacy PFAS and the continued use of replacement compounds. In humans, PFAS have been detected in placenta and cord blood and are associated with low birth weight and preeclampsia risk. Preeclampsia is a leading cause of maternal mortality and is driven by insufficient endometrial trophoblast invasion, resulting in poor placental blood flow. PFAS alter invasion of other cell types, but their impact on trophoblasts is not understood. We therefore assessed the effects of PFAS on trophoblast migration, invasion, and gene expression in vitro. Trophoblast migration and invasion were assessed using a modified scratch assay in the absence or presence of Matrigel, respectively. Treatment with perfluorooctanoic sulfate (PFOS), perfluorooctanoic acid (PFOA), and GenX (1000 ng/ml) each decreased trophoblast migration over 24 h. However, only GenX (1000 ng/ml) significantly inhibited trophoblast invasion. Treatment with PFOS, PFOA, and GenX also decreased trophoblast expression of chemokines (eg, CCL2), chemokine receptors (eg, CCR4), and inflammatory enzymes (eg, ALOX15) involved in migration. Inhibition of chemokine receptors with pertussis toxin (10 ng/ml), a G-protein inhibitor, inhibited trophoblast migration similar to the PFAS. Taken together, PFAS decrease trophoblast migration, invasion, and inflammatory signaling. By understanding the mechanisms involved, it may be possible to identify the biological and exposure factors that contribute to preeclampsia.


2019 ◽  
Vol 47 (3) ◽  
pp. 793-800 ◽  
Author(s):  
Shereen A. Murugayah ◽  
Monica L. Gerth

Abstract Quorum sensing is a key contributor to the virulence of many important plant, animal and human pathogens. The disruption of this signalling—a process referred to as ‘quorum quenching’—is a promising new approach for controlling microbial pathogens. In this mini-review, we have focused on efforts to engineer enzymes that disrupt quorum sensing by inactivating acyl-homoserine lactone signalling molecules. We review different approaches for protein engineering and provide examples of how these engineering approaches have been used to tailor the stability, specificity and activities of quorum quenching enzymes. Finally, we grapple with some of the issues around these approaches—including the disconnect between in vitro biochemistry and potential in vivo applications.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 51
Author(s):  
Venu Gopal Reddy Patlolla ◽  
Nikolina Popovic ◽  
William Peter Holbrook ◽  
Thordis Kristmundsdottir ◽  
Sveinbjörn Gizurarson

The aim of this work was to stabilize doxycycline in mucoadhesive buccal films at room temperature (25 °C). Since doxycycline is susceptible to degradation such as oxidation and epimerization, tablets are currently the only formulation that can keep the drug fully stable at room temperature, while liquid formulations are limited to refrigerated conditions (4 °C). In this study, the aim was to make formulations containing subclinical (antibiotic) doxycycline concentration that can act as matrix metalloproteinase inhibitors (MMPI) and can be stored at temperatures such as 25 °C. Here, doxycycline was complexed with excipients using three techniques and entrapped into microparticles that were stored at 4 °C, 25 °C and 40 °C. Effect of addition of precomplexed doxycycline microparticles on films: stability mucoadhesion capacity, tensile strength, swelling index and in vitro release was studied. The complexation efficiency between drug-excipients, microparticles and films was studied using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Two of the films were found to be stable at 4 °C but the film containing microparticle composed of precomplexed doxycycline with β-cyclodextrin, MgCl2, sodium thiosulfate, HPMC and Eudragit® RS 12.5 was found to be stable at 25 °C until 26 weeks. The addition of microparticles to the films was found to reduce the mucoadhesive capacity, peak detachment force, tensile strength and elasticity, but improved the stability at room temperature.


2021 ◽  
Vol 28 (9) ◽  
Author(s):  
Franca Scocozza ◽  
Mirena Sakaj ◽  
Ferdinando Auricchio ◽  
Stefania Marconi ◽  
Pietro Riello ◽  
...  

AbstractPolycaprolactone (PCL) and hydroxyapatite (HA) composite are widely used in tissue engineering (TE). They are fit to being processed with three-dimensional (3D) printing technique to create scaffolds with verifiable porosity. The current challenge is to guarantee the reliability and reproducibility of 3D printed scaffolds and to create sterile scaffolds which can be used for in vitro cell cultures. In this context it is important for successful cell culture, to have a protocol in order to evaluate the sterility of the printed scaffolds. We proposed a systematic approach to sterilise 90%PCL-10%HA pellets using a 3D bioprinter before starting the printing process. We evaluated the printability of PCL-HA composite and the shape fidelity of scaffolds printed with and without sterilised pellets varying infill pattern, and the sterility of 3D printed scaffolds following the method established by the United States Pharmacopoeia. Finally, the thermal analyses supported by the Fourier Transform Infrared Spectroscopy were useful to verify the stability of the sterilisation process in the PCL solid state with and without HA. The results show that the use of the 3D printer, according to the proposed protocol, allows to obtain sterile 3D PCL-HA scaffolds suitable for TE applications such as bone or cartilage repair.


2020 ◽  
Author(s):  
Pramod G Nagaraju ◽  
Parineeta Sengupta ◽  
C. G. Poornima Priyadarshini ◽  
Pooja J Rao

AbstractThe therapeutic properties of clove oil is known for centuries, however, the pungent nature, chemical instability and low water solubility impose limitations in harnessing its therapeutic potential. Hence, nanoencapsulation of clove oil was performed to overcome the above constraints and control its in-vitro release. The stability of nanoemulsion depends on various factors where the surfactant and its hydrophile/lipofile balance (HLB) play a key role. The non-ionic surfactants Tween 20, 40 and 80 with HLB of 16.7, 15.6 and 15, respectively, were used to study the stability of clove oil nanoemulsion (CON). The creaming index of CON prepared with Tween 20, 40 and 80 was 22.75 and 17.5 and 1.5%, respectively, after 8 days of storage at room temperature. Tween 20 and 40 produced particles > 300 nm while Tween 80 resulted in particles of size ∼150 nm. Transmission electron microscopic image of spray dried CON prepared with Tween 80 showed particle size in the range 150-190 nm after one month of storage at room temperature. The in vitro release studies showed 76% and 42% cumulative release of CON and native clove oil (NC), respectively at pH 7.4. The cellular toxicity of CON was significantly reduced by four fold compared to NC at a concentration of 60 µg/mL when tested on Caco2 cells. Similarly, haemolytic activity on red blood cells revealed less than 10% haemolysis signifying the compatibility of CON for its nutraceutical applications. In addition, CON also exhibited higher in-vitro antioxidant compared to NC as shown by DPPH and ABTS radical scavenging activity. Collectively, we have developed a unique method for NC nanoencapsulation using cost effective polysaccharide (maltodextrin) and surfactant for stabilizing the nanoemulsion for increased bioactivity.


2008 ◽  
Vol 53 (3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Scott K. Smith ◽  
Victoria A. Olson ◽  
Kevin L. Karem ◽  
Robert Jordan ◽  
Dennis E. Hruby ◽  
...  

ABSTRACT Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of ≤0.067 μM against variola virus and <0.04 μM against monkeypox virus. In a dose-dependent manner, plaque size and comet tail formation were markedly reduced in the presence of the drug at low, noncytotoxic concentrations between 0.015 and 0.05 μM. Our in vitro phenotype data suggest that ST-246 inhibits variola and monkeypox viruses similarly by reducing the production and release of enveloped orthopoxvirus and support the development of ST-246 as an antiviral therapeutic compound for the treatment of severe systemic orthopoxvirus infections.


1968 ◽  
Vol 41 (4) ◽  
pp. 491-497 ◽  
Author(s):  
H. D. PURVES ◽  
NANCY E. SIRETT

SUMMARY Corticotrophin (ACTH) activity in rat plasma, both endogenous (adrenalectomized rat plasma) and exogenous (International Working Standard, 1962), has been assayed in dexamethasone-treated rats and the stability studied under various conditions of storage. Exogenous ACTH added to rat plasma and assayed immediately had only 76% of the activity of the same ACTH dissolved in gelatine acid saline medium. This difference is ascribed to the effects of the medium and not to inactivation. When allowance was made for the effects of the medium on potency, added ACTH showed a similar stability on incubation or storage to endogenous ACTH. For endogenous ACTH the following loss of activity was found in vitro: after 45 min. at 37°, 64%; after 1 day at room temperature, more than 85%; after 1 day at 3°, 58%. No loss of potency was detected on storage at −17° for 18 months. It is concluded that plasma can be frozen, stored at low temperature, and thawed without significant loss of corticotrophic potency provided that the blood is chilled as soon as drawn and the subsequent operations performed expeditiously.


2016 ◽  
Vol 82 (24) ◽  
pp. 7093-7101 ◽  
Author(s):  
Mark A. Boggs ◽  
Yongqin Jiao ◽  
Zurong Dai ◽  
Mavrik Zavarin ◽  
Annie B. Kersting

ABSTRACTSafe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu)-contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS) in Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild-type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the same sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission electron microscopy indicated that 2- to 3-nm nanocrystalline Pu(IV)O2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates.IMPORTANCEOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV) and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results, along with a growing body of literature, highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.


Sign in / Sign up

Export Citation Format

Share Document