scholarly journals Characterization of the flagellar collar reveals structural plasticity essential for spirochete motility

2021 ◽  
Author(s):  
Yunjie Chang ◽  
Hui Xu ◽  
Md A. Motaleb ◽  
Jun Liu

AbstractSpirochetes are a remarkable group of bacteria with distinct morphology and periplasmic flagella that enable motility in viscous environments, such as host connective tissues. The collar, a spirochete-specific complex of the periplasmic flagellum, is required for the unique spirochete motility, yet it has not been clear how the collar assembles and enables spirochetes to transit between complex host environments. Here, we characterize the collar complex in the Lyme disease spirochete Borrelia burgdorferi. We discover as well as delineate the distinct functions of two novel collar proteins, FlcB and FlcC, by combining subtractive bioinformatic, genetic, and cryo-electron tomography approaches. Our high-resolution in-situ structures reveal that the multi-protein collar has a remarkable structural plasticity essential not only for assembly of flagellar motors in the highly curved membrane of spirochetes but also for generation of the high torque necessary for spirochete motility.

2018 ◽  
Author(s):  
Zhuan Qin ◽  
Akarsh Manne ◽  
Jiagang Tu ◽  
Zhou Yu ◽  
Kathryn Lees ◽  
...  

ABSTRACTPeriplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific Type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we combine cryo-electron tomography and mutagenesis approaches to characterize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We define the fT3SS machine by systematically characterizing mutants lacking key component genes. We discover that a distinct cytosolic ATPase complex is attached to the flagellar C-ring through multiple spoke-like linkers. The ATPase complex not only strengthens structural rigidity of the C-ring, but also undergoes conformational changes in concert with flagellar rotation. Our studies provide structural framework to uncover the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the bases for the development of novel therapeutic strategies against several pathogenic spirochetes.


Nanoscale ◽  
2018 ◽  
Vol 10 (48) ◽  
pp. 22792-22801 ◽  
Author(s):  
Hans Vanrompay ◽  
Eva Bladt ◽  
Wiebke Albrecht ◽  
Armand Béché ◽  
Marina Zakhozheva ◽  
...  

The thermal reshaping and its influence on the plasmonic properties of gold nanostars are investigated using a combination of in situ tomography and a state-of-the-art fast acquisition approach.


2009 ◽  
Vol 191 (16) ◽  
pp. 5026-5036 ◽  
Author(s):  
Jun Liu ◽  
Tao Lin ◽  
Douglas J. Botkin ◽  
Erin McCrum ◽  
Hanspeter Winkler ◽  
...  

ABSTRACT The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.


Langmuir ◽  
2015 ◽  
Vol 31 (31) ◽  
pp. 8680-8688 ◽  
Author(s):  
Tara L. Fox ◽  
Saide Tang ◽  
Jonathan M. Horton ◽  
Heather A. Holdaway ◽  
Bin Zhao ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Yunjie Chang ◽  
Hui Xu ◽  
Md A. Motaleb ◽  
Jun Liu

Many spirochetes cause serious human diseases. They are well recognized by their distinct morphology and motility.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Reproduction ◽  
2000 ◽  
pp. 325-335 ◽  
Author(s):  
A Calvo ◽  
LM Pastor ◽  
S Bonet ◽  
E Pinart ◽  
M Ventura

Lectin histochemistry was used to perform in situ characterization of the glycoconjugates present in boar testis and epididymis. Thirteen horseradish peroxidase- or digoxigenin-labelled lectins were used in samples obtained from healthy fertile boars. The acrosomes of the spermatids were stained intensely by lectins with affinity for galactose and N-acetyl-galactosamine residues, these being soybean, peanut and Ricinus communis agglutinins. Sertoli cells were stained selectively by Maackia ammurensis agglutinin. The lamina propria of seminiferous tubules showed the most intense staining with fucose-binding lectins. The Golgi area and the apical part of the principal cells of the epididymis were stained intensely with many lectins and their distribution was similar in the three zones of the epididymis. On the basis of lectin affinity, both testis and epididymis appear to have N- and O-linked glycoconjugates. Spermatozoa from different epididymal regions showed different expression of terminal galactose and N-acetyl-galactosamine. Sialic acid (specifically alpha2,3 neuraminic-5 acid) was probably incorporated into spermatozoa along the extratesticular ducts. These findings indicate that the development and maturation of boar spermatozoa are accompanied by changes in glycoconjugates. As some lectins stain cellular or extracellular compartments specifically, these lectins could be useful markers in histopathological evaluation of diseases of boar testis and epididymis.


Sign in / Sign up

Export Citation Format

Share Document