scholarly journals The PH/MyTH4/FERMmolecule MAX-1 inhibits UNC-5 activity in regulation of VD growth cone protrusion in Caenorhabditis elegans

2021 ◽  
Author(s):  
Snehal S. Mahadik ◽  
Erik A. Lundquist

UNC-6/Netrin is a secreted conserved guidance cue that regulates dorsal-ventral axon guidance of C. elegans and in the vertebral spinal cord. In the polarity/protrusion model of VD growth cone guidance away from ventrally-expressed UNC-6 (repulsion), UNC-6 first polarizes the growth cone via the UNC-5 receptor such that filopodial protrusions are biased dorsally. UNC-6 then regulates a balance of protrusion in the growth cone based upon this polarity. UNC-5 inhibits protrusion ventrally, and the UNC-6 receptor UNC-40/DCC stimulates protrusion dorsally, resulting in net dorsal growth cone outgrowth. UNC-5 inhibits protrusion through the flavin monooxygenases FMO-1, 4, and 5 and possible actin destabilization, and inhibits pro-protrusive microtubule entry into the growth cone utilizing UNC-33/CRMP. The PH/MyTH4/FERM myosin-like protein was previously shown to act with UNC-5 in VD axon guidance utilizing axon guidance endpoint analysis. Here, we analyzed the effects of MAX-1 on VD growth cone morphology during outgrowth. We found that max-1 mutant growth cones were smaller and less protrusive than wild-type, the opposite of the unc-5 mutant phenotype. Furthermore, genetic interactions suggest that MAX-1 might normally inhibit UNC-5 activity, such that in a max-1 mutant growth cone, UNC-5 is overactive. Our results, combined with previous studies suggesting that MAX-1 might regulate UNC-5 levels in the cell or plasma membrane localization, suggest that MAX-1 attenuates UNC-5 signaling by regulating UNC-5 stability or trafficking. In summary, in the context of growth cone protrusion, MAX-1 inhibits UNC-5, demonstrating the mechanistic insight that can be gained by analyzing growth cones during outgrowth in addition to axon guidance endpoint analysis.

2019 ◽  
Author(s):  
Mahekta R. Gujar ◽  
Aubrie M. Stricker ◽  
Erik A. Lundquist

AbstractUNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions suggest that RHO-1 and RHGF-1 act with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.Author SummaryNeural circuits are formed by precise connections between axons. During axon formation, the growth cone leads the axon to its proper target in a process called axon guidance. Growth cone outgrowth involves asymmetric protrusion driven by extracellular cues that stimulate and inhibit protrusion. How guidance cues regulate growth cone protrusion in neural circuit formation is incompletely understood. This work shows that the signaling molecule RHO-1 acts downstream of the UNC-6/Netrin guidance cue to inhibit growth cone protrusion in part by excluding microtubules from the growth cone, which are structural elements that drive protrusion.


2018 ◽  
Author(s):  
Mahekta R. Gujar ◽  
Lakshmi Sundararajan ◽  
Aubrie Stricker ◽  
Erik A. Lundquist

AbstractMany axon guidance ligands and their receptors have been identified, but it is still unclear how these ligand-receptor interactions regulate events in the growth cone, such as protrusion and cytoskeletal arrangement, during directed outgrowth in vivo. In this work, we dissect the multiple and complex effects of UNC-6/Netrin on the growth cone. Previous studies showed that in C. elegans, the UNC-6/Netrin receptor UNC-5 regulates growth cone polarity, as evidenced by loss of asymmetric dorsal F-actin localization and protrusion in unc-5 mutants. UNC-5 and another UNC-6/Netrin receptor UNC-40/DCC also regulate the extent of protrusion, with UNC-40/DCC driving protrusion and UNC-5 inhibiting protrusion. In this work we analyze the roles of UNC-6/Netrin, UNC-40/DCC, and UNC-5 in coordinating growth cone F-actin localization, microtubule organization, and protrusion that results in directed outgrowth away from UNC-6/Netrin. We find that a previously-described pathway involving the UNC-73/Trio Rac GEF and UNC-33/CRMP that acts downstream of UNC-5, regulates growth cone dorsal asymmetric F-actin accumulation and protrusion. unc-5 and unc-33 mutants also display excess EBP-2::GFP puncta, suggesting that MT + end accumulation is important in growth cone polarity and/or protrusion. unc-73 Rac GEF mutants did not display excess EBP-2::GFP puncta despite larger and more protrusive growth cones, indicating a MT-independent mechanism to polarize the growth cone and to inhibit protrusion, possibly via actin. Finally, we show that UNC-6/Netrin and UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of F-actin asymmetry and MT + end entry. Our data suggest a model in which UNC-6/Netrin polarizes the growth cone via UNC-5, and then regulates a balance of pro- and anti-protrusive forces driven by UNC-40 and UNC-5, respectively, that result in directed protrusion and outgrowth.


2021 ◽  
Author(s):  
Haider Z. Naqvi

Novel genetic enhancer screens were conducted targeting mutants involved in the guidance of axons of the DA and DB classes of motor neurons in C. elegans. These mutations are expected in genes that function in parallel to the unc-g/Netrin pathway. The screen was conducted in an unc-5(e53) genetic background and enhancers of the axon guidance defects caused by the absence of UNC-5 were identified. Three mutants were previously identified in the screen called rq1, rq2 and rq3 and two additional mutants called H2-4 and M1-3, were isolated in this study. In order to identify the gene affected by the rq1 mutation, wild-type copies of genes in the mapped rq1 mutation region were injected into the mutants to rescue the phenotypic defects. This is a strong indication that the gene of interest is a novel gene called H04D03.1. Promising results indicate that the H04D03.1 protein also works in germ-line apoptosis.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4545-4552 ◽  
Author(s):  
G. C. Teg Pipes ◽  
Qing Lin ◽  
Stephanie E. Riley ◽  
Corey S. Goodman

A previous genetic screen led to the identification of the beaten path (beat Ia) gene in Drosophila. Beat Ia contains two immunoglobulin (Ig) domains and appears to function as an anti-adhesive factor secreted by specific growth cones to promote axon defasciculation. We identify a family of 14 beat-like genes in Drosophila. In contrast to beat Ia, four novel Beat-family genes encode membrane-bound proteins. Moreover, mutations in each gene lead to much more subtle guidance phenotypes than observed in beat Ia. Genetic interactions between beat Ic and beat Ia reveal complementary functions. Our data suggest a model whereby Beat Ic (and perhaps other membrane-bound family members) functions in a pro-adhesive fashion to regulate fasciculation, while Beat Ia (the original secreted Beat) functions in an anti-adhesive fashion to regulate defasciculation.


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Nicholas P. Boyer ◽  
Laura E. McCormick ◽  
Shalini Menon ◽  
Fabio L. Urbina ◽  
Stephanie L. Gupton

Appropriate axon guidance is necessary to form accurate neuronal connections. Axon guidance cues that stimulate cytoskeletal reorganization within the growth cone direct axon navigation. Filopodia at the growth cone periphery have long been considered sensors for axon guidance cues, yet how they respond to extracellular cues remains ill defined. Our previous work found that the filopodial actin polymerase VASP and consequently filopodial stability are negatively regulated via nondegradative TRIM9-dependent ubiquitination. Appropriate VASP ubiquitination and deubiquitination are required for axon turning in response to the guidance cue netrin-1. Here we show that the TRIM9-related protein TRIM67 outcompetes TRIM9 for interacting with VASP and antagonizes TRIM9-dependent VASP ubiquitination. The surprising antagonistic roles of two closely related E3 ubiquitin ligases are required for netrin-1–dependent filopodial responses, axon turning and branching, and fiber tract formation. We suggest a novel model in which coordinated regulation of VASP ubiquitination by a pair of interfering ligases is a critical element of VASP dynamics, filopodial stability, and axon guidance.


2016 ◽  
Vol 213 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Russell E. McConnell ◽  
J. Edward van Veen ◽  
Marina Vidaki ◽  
Adam V. Kwiatkowski ◽  
Aaron S. Meyer ◽  
...  

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


1997 ◽  
Vol 138 (6) ◽  
pp. 1279-1287 ◽  
Author(s):  
Mei Lu ◽  
Walter Witke ◽  
David J. Kwiatkowski ◽  
Kenneth S. Kosik

Growth cones extend dynamic protrusions called filopodia and lamellipodia as exploratory probes that signal the direction of neurite growth. Gelsolin, as an actin filament-severing protein, may serve an important role in the rapid shape changes associated with growth cone structures. In wild-type (wt) hippocampal neurons, antibodies against gelsolin labeled the neurite shaft and growth cone. The behavior of filopodia in cultured hippocampal neurons from embryonic day 17 wt and gelsolin null (Gsn−) mice (Witke, W., A.H. Sharpe, J.H. Hartwig, T. Azuma, T.P. Stossel, and D.J. Kwiatkowski. 1995. Cell. 81:41–51.) was recorded with time-lapse video microscopy. The number of filopodia along the neurites was significantly greater in Gsn− mice and gave the neurites a studded appearance. Dynamic studies suggested that most of these filopodia were formed from the region of the growth cone and remained as protrusions from the newly consolidated shaft after the growth cone advanced. Histories of individual filopodia in Gsn− mice revealed elongation rates that did not differ from controls but an impaired retraction phase that probably accounted for the increased number of filopodia long the neutrite shaft. Gelsolin appears to function in the initiation of filopodial retraction and in its smooth progression.


2017 ◽  
Author(s):  
Mahekta Gujar ◽  
Aubrie M. Stricker ◽  
Erik A. Lundquist

AbstractThe guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5/UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5/UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL.Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies, we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance.Author SummaryMolecular mechanisms of axon repulsion mediated by UNC-6/Netrin are not well understood. Inhibition of growth cone lamellipodial and filopodial protrusion is critical to repulsive axon guidance. Previous work identified a novel pathway involving Rac GTPases and the cytoskeletal interacting molecule UNC-33/CRMP required for UNC-6/Netrin-mediated inhibition of growth cone protrusion. In other systems, CRMP mediates growth cone collapse in response to semaphorin. Here we demonstrate a novel role of flavoprotein monooxygenases (FMOs) in repulsive axon guidance and inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling and Rac GTPases. In Drosophila and vertebrates, the multidomain MICAL FMO mediates semaphorin-dependent growth cone collapse by direct oxidation and depolymerization of F-actin. The C. elegans genome does not encode a multidomain MICAL-like molecule, and we speculate that the C. elegans FMOs might have an equivalent role downstream of UNC-6/Netrin signaling. Indeed, we show that EHBP-1, similar to the non-FMO portion of MICAL, also controls repulsive axon guidance and growth cone inhibition, suggesting that in C. elegans, the functions of the multidomain MICAL molecule might be distributed across different molecules. In sum, we show conservation of function of molecules involved in semaphorin growth cone collapse with inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giasuddin Ahmed ◽  
Yohei Shinmyo

Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.


2021 ◽  
Author(s):  
Haider Z. Naqvi

Novel genetic enhancer screens were conducted targeting mutants involved in the guidance of axons of the DA and DB classes of motor neurons in C. elegans. These mutations are expected in genes that function in parallel to the unc-g/Netrin pathway. The screen was conducted in an unc-5(e53) genetic background and enhancers of the axon guidance defects caused by the absence of UNC-5 were identified. Three mutants were previously identified in the screen called rq1, rq2 and rq3 and two additional mutants called H2-4 and M1-3, were isolated in this study. In order to identify the gene affected by the rq1 mutation, wild-type copies of genes in the mapped rq1 mutation region were injected into the mutants to rescue the phenotypic defects. This is a strong indication that the gene of interest is a novel gene called H04D03.1. Promising results indicate that the H04D03.1 protein also works in germ-line apoptosis.


Sign in / Sign up

Export Citation Format

Share Document