scholarly journals Ankylosis homologue mediates cellular efflux of ATP, not pyrophosphate

2021 ◽  
Author(s):  
Flora Szeri ◽  
Fatemeh Niaziorimi ◽  
Sylvia Donnelly ◽  
Nishat Fariha ◽  
Mariia Tertyshnaia ◽  
...  

AbstractThe plasma membrane protein Ankylosis Homologue (ANKH, mouse ortholog: Ank) prevents pathological mineralization of joints by controlling extracellular levels of the mineralization inhibitor pyrophosphate (PPi). It was long thought that ANKH acts by transporting PPi into the joints, but we recently showed that ANKH releases large amounts of nucleoside triphosphates (NTPs), predominantly ATP, into the culture medium. This ATP is converted extracellularly into PPi and AMP by the ectoenzyme Ectonucleotide Pyrophosphatase Phosphodiesterase 1 (ENPP1). We could not rule out, however, that cells also release PPi directly via ANK. We now addressed this question by determining the effect of a complete absence of ENPP1 on ANKH-dependent extracellular PPi concentrations. Introduction of ANKH in ENPP1-deficient HEK293 cells resulted in robust cellular ATP release without the concomitant increase in extracellular PPi seen in ENPP1-proficient cells.Ank-activity was previously shown to be responsible for about 75% of the PPi found in mouse bones. However, bones of Enpp1-/- mice contained < 2.5% of the PPi found in bones of wild type mice, showing that Enpp1-activity is also a prerequisite for Ank-dependent PPi incorporation into the mineralized bone matrix in vivo. Hence, ATP release precedes ENPP1-mediated PPi formation. We find that ANKH also provides about 25% of plasma PPi, whereas we have previously shown that 60-70 % of plasma PPi is derived from the NTPs extruded by the ABC transporter, ABCC6. Both transporters that keep plasma PPi at sufficient levels to prevent pathological calcification, therefore do so by extruding NTPs rather than PPi itself.

1985 ◽  
Vol 63 (6) ◽  
pp. 585-598 ◽  
Author(s):  
Arthur Forer

Chromosomes move towards spindle poles because of force produced by chromosomal spindle fibres. I argue that actin is involved in producing this force. Actin is present in chromosomal spindle fibres, with consistent polarity. Physiological experiments using ultraviolet microbeam irradiations suggest that the force is due to an actin and myosin (or myosin-equivalent) system. Other physiological experiments (using inhibitors in "leaky" cells or antibodies injected into cells) that on the face of it would seem to rule out actin and myosin on closer scrutiny do not really do so at all. I argue that in vivo the "on" ends of chromosomal spindle fibre microtubules are at the kinetochores; I discuss the apparent contradiction between this conclusion and those from experiments on microtubules in vitro. From what we know of treadmilling in microtubules in vitro, the poleward movements of irradiation-induced areas of reduced birefringence (arb) can not be explained as treadmilling of microtubules: additional assumptions need to be made for arb movements toward the pole to be due to treadmilling. If arb movement does indeed represent treadmilling along chromosomal spindle fibre microtubules, treadmilling continues throughout anaphase. Thus I suggest that chromosomal spindle fibres shorten in anaphase not because polymerization is stopped at the kinetochore (the on end), as previously assumed, but rather because there is increased depolymerization at the pole (the "off" end).


2001 ◽  
Vol 193 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Teruhito Yamashita ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investigate the possible requirement for OPN in the transduction of mechanical signaling in bone metabolism in vivo, we examined the effect of unloading on the bones of OPN−/− mice using a tail suspension model. In contrast to the tail suspension–induced bone loss in wild-type mice, OPN−/− mice did not lose bone. Elevation of urinary deoxypyridinoline levels due to unloading was observed in wild-type but not in OPN−/− mice. Analysis of the mechanisms of OPN deficiency–dependent reduction in bone on the cellular basis resulted in two unexpected findings. First, osteoclasts, which were increased by unloading in wild-type mice, were not increased by tail suspension in OPN−/− mice. Second, measures of osteoblastic bone formation, which were decreased in wild-type mice by unloading, were not altered in OPN−/− mice. These observations indicate that the presence of OPN is a prerequisite for the activation of osteoclastic bone resorption and for the reduction in osteoblastic bone formation in unloaded mice. Thus, OPN is a molecule required for the bone loss induced by mechanical stress that regulates the functions of osteoblasts and osteoclasts.


2013 ◽  
Vol 305 (11) ◽  
pp. C1161-C1169 ◽  
Author(s):  
Xiuju Li ◽  
Daniel Prins ◽  
Marek Michalak ◽  
Larry Fliegel

The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that regulates intracellular pH by removing a single proton (H+) in exchange for one extracellular Na+. The human protein contains a ∼500-amino acid membrane domain and a regulatory, ∼315-amino acid cytosolic domain. NHE1 is activated by a number of hormones including endothelin (ET) and by Ca2+. The regulatory tail possesses an inhibitory calmodulin (CaM)-binding domain, and inhibition of NHE1 is relieved by binding of a Ca2+-CaM complex. We examined the dynamics of ET-1 and Ca2+ regulation of binding to NHE1 in vivo. CFP was linked to the NHE1 protein cytoplasmic COOH terminus. This was stably transfected into AP-1 cells that are devoid of their own NHE1 protein. The protein was expressed and targeted properly and retained NHE1 activity comparable to the wild-type protein. We examined the in vivo coupling of NHE1 to CaM by Förster resonance energy transfer using CaM linked to the fluorescent protein Venus. CaM interaction with NHE1 was dynamic. Removal of serum reduced CaM interaction with NHE1. Addition of the Ca2+ ionophore ionomycin increased the interaction between CaM and NHE1. We expressed an ET receptor in AP-1 cells and also found a time-dependent association of NHE1 with CaM in vivo that was dependent on ET treatment. The results are the first demonstration of the in vivo association of NHE1 and CaM through ET-dependent signaling pathways.


Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 669-685
Author(s):  
Karin Carlson ◽  
Aud Ȗvervatin

ABSTRACT Bacteriophage T4 mutants defective in gene 56 (dCTPase) synthesize DNA where cytosine (Cyt) partially or completely replaces hydroxymethylcytosine (HmCyt). This Cyt-DNA is degraded in vivo by T4 endonucleases II and IV, and by the exonuclease coded or controlled by genes 46 and 47.—Our results demonstrate that T4 endonuclease II is the principal enzyme initiating degradation of T4 Cyt-DNA. The activity of endonuclease IV, but not that of endonuclease II, was stimulated in the presence of a wild-type dCMP hydroxymethylase, also when no HmCyt was incorporated into phage DNA, suggesting the possibility of direct endonuclease IV-dCMP hydroxymethylase interactions. Endonuclease II activity, on the other hand, was almost completely inhibited in the presence of very small amounts of HmCyt (3-9% of total Cyt + HmCyt) in the DNA. Possible mechanisms for this inhibition are discussed.—The E. coli RNA polymerase modified by the products of T4 genes 33 and 55 was capable of initiating DNA synthesis on a Cyt-DNA template, although it probably cannot do so on an HmCyt template. In the presence of an active endonuclease IV, Cyt-DNA synthesis was arrested 10-30 min after infection, probably due to damage to the template. Cyt-DNA synthesis dependent on the unmodified (33  -  55  -) RNA polymerase was less sensitive to endonuclease IV action.


2022 ◽  
pp. ASN.2021030392
Author(s):  
Wouter van Megen ◽  
Megan Beggs ◽  
Sung-Wan An ◽  
Patrícia Ferreira ◽  
Justin Lee ◽  
...  

Background Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal calcium wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. Methods We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase-reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient potential receptor vanilloid 5 (TPRV5), as determined by patch-clamp in HEK293 cells. Results Gentamicin increased urinary Ca2+ excretion in wild-type mice following acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/-mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch-clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and that chronic gentamicin administration downregulated distal nephron Ca2+ transporters. Conclusions Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into calcium wasting in patients treated with gentamicin.


2021 ◽  
Author(s):  
Jialiang S Wang ◽  
Tushar Kamath ◽  
Fatemeh Mirzamohammadi ◽  
Daniel Rotter ◽  
Hironori Hojo ◽  
...  

Osteocytes use an elaborate network of dendritic connections to control bone remodeling. Some osteoblasts embed within mineralized bone matrix, change shape, and become osteocytes. The molecular circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7, a gene linked to rare and common skeletal disease, in mature osteoblasts and osteocytes causes severe defects in osteocyte dendrites. Unbiased profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues phenotypic and molecular defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates overt defects in osteocyte maturation in vivo in the absence of Sp7. Sp7-dependent gene networks enriched in developing osteocytes are associated with rare and common human skeletal traits. Moreover, humans homozygous for the osteogenesis imperfecta-causing SP7R316C mutation show dramatic defects in osteocyte morphology. Genes that mark osteocytes in vivo and that are regulated by Sp7 in vitro are highly enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. Taken together, these findings reveal a crucial role for Sp7 and its target gene Osteocrin in osteocytogenesis, demonstrating that pathways that control osteocyte development influence human bone diseases.


1998 ◽  
Vol 64 (12) ◽  
pp. 5016-5019 ◽  
Author(s):  
Guadalupe Piñar ◽  
Juan L. Ramos

ABSTRACT Klebsiella oxytoca CECT 4460 removes high nitrate loads from industrial wastewaters without accumulation of nitrite under optimal culture conditions; however, under nonoptimal conditions nitrite accumulates. This situation reflects an in vivo-limited functioning of nitrite reductase in this strain. As a way to overcome this limitation, an increase in the nitrite reductase gene dose inK. oxytoca CECT 4460 was considered. To achieve this, we cloned and transferred into this strain the Klebsiella pneumoniae nasB gene, which encodes assimilatory nitrite reductase (Lin et al., J. Bacteriol. 176:2551–2559, 1994). The delivery vector was either the wide-host-range plasmid pUPE2, in which the nasB gene is expressed from the Escherichia coli Plac promoter, or a mini-Tn5-Km vector, which upon random insertion in the host chromosome allowed expression of the nasB gene from an unidentified chromosomal host promoter. The effect of the increase in the dose of the nasB gene in K. oxytoca CECT 4460 on the accumulation of nitrite in the culture medium was tested in two recombinant strains. The results obtained showed that K. oxytoca CECT 4460 bearing pUPE2 accumulated 88% less nitrite than the wild-type strain, while the recombinant strain bearing the K. pneumoniae nasB gene in the host chromosome showed a 25% lower level of nitrite accumulation in the culture medium than that of the wild type.


2007 ◽  
Vol 76 (3) ◽  
pp. 1153-1162 ◽  
Author(s):  
John J. Lazarus ◽  
Maria A. Kay ◽  
Akisha L. McCarter ◽  
R. Mark Wooten

ABSTRACT Although it is capable of eliciting strong innate and adaptive immune responses, Borrelia burgdorferi often evades immune clearance through largely unknown mechanisms. Our previous studies determined that infected interlukin-10−/− (IL-10−/−) mice show significantly lower B. burgdorferi levels than wild-type (B6) mice and that IL-10 inhibits innate immune responses critical for controlling B. burgdorferi infection. To determine whether virulent B. burgdorferi preferentially enhances IL-10 production, we developed an in vitro coculture medium (RPMI.B) in which both B. burgdorferi and primary macrophages (Mφs) remain viable. B. burgdorferi grew at similar rates and was able to regulate expression of immunoreactive proteins with similar kinetics in RPMI.B and in traditional BSK medium; in contrast, B. burgdorferi cultured in conventional tissue culture medium (RPMI) rapidly lost viability. Coculture of viable B. burgdorferi in RPMI.B with Mφs resulted in more rapid and significant increases in IL-10 transcripts and secreted proteins than coculture with nonviable B. burgdorferi in RPMI, which corresponded with decreased production of proinflammatory cytokines. Addition of live B. burgdorferi to Mφs in RPMI.B also elicited substantially higher IL-10 levels than heat-killed bacteria elicited, confirming that increased IL-10 production was not inherent to coculture in RPMI.B. Transfer of supernatants from B. burgdorferi-stimulated Mφs into naïve Mφ cultures resulted in suppressed activation upon subsequent stimulation with different bacterial agonists, and this suppression was obviated by IL-10-specific antibody. In vivo analyses determined that murine skin samples exhibited substantial upregulation of IL-10 within 24 h of injection of B. burgdorferi. Together, these results suggest that viable B. burgdorferi can suppress early Mφ responses during infection by causing increased release of IL-10.


2020 ◽  
Vol 8 (1) ◽  
pp. e000462 ◽  
Author(s):  
Yan Wang ◽  
Wei Xie ◽  
Juliette Humeau ◽  
Guo Chen ◽  
Peng Liu ◽  
...  

BackgroundImmunogenic cell death (ICD) is a peculiar modality of cellular demise that elicits adaptive immune responses and triggers T cell-dependent immunity.MethodsFluorescent biosensors were employed for an unbiased drug screen approach aiming at the identification of ICD enhancers.ResultsHere, we discovered thiostrepton as an enhancer of ICD able to boost chemotherapy-induced ATP release, calreticulin exposure and high-mobility group box 1 exodus. Moreover, thiostrepton enhanced anticancer immune responses of oxaliplatin (OXA) in vivo in immunocompetent mice, yet failed to do so in immunodeficient animals. Consistently, thiostrepton combined with OXA altered the ratio of cytotoxic T lymphocytes to regulatory T cells, thus overcoming immunosuppression and reinstating anticancer immunosurveillance.ConclusionAltogether, these results indicate that thiostrepton can be advantageously combined with chemotherapy to enhance anticancer immunogenicity.


2003 ◽  
Vol 99 (4) ◽  
pp. 889-895 ◽  
Author(s):  
Andrea Paris ◽  
Melanie Philipp ◽  
Peter H. Tonner ◽  
Markus Steinfath ◽  
Martin Lohse ◽  
...  

Background The intravenous anesthetic etomidate exhibits structural similarities to specific alpha2-adrenoceptor agonists of the type such as dexmedetomidine. The current study was performed to elucidate the possible interaction of etomidate with alpha2-adrenoceptors in mice lacking individual alpha2-adrenoceptor subtypes (alpha2-KO). Methods Sedative and cardiovascular responses to etomidate and the alpha2-agonist, dexmedetomidine, were determined in mice deficient in alpha2-receptor subtypes. Inhibition of binding of the alpha2-receptor antagonist [3H]RX821002 to recombinant alpha2-receptors by etomidate was tested in human embryonic kidney (HEK293) cells in vitro. Results In vivo, loss and recovery of the righting reflex required similar times after intraperitoneal injection of etomidate in wild-type and in alpha2A-receptor-deficient mice, indicating that the hypnotic effect of etomidate in mice does not require the alpha2A-receptor subtype. Intravenous injection of etomidate resulted in a transient increase (duration 2.4 +/- 0.2 min) in arterial blood pressure in wild-type mice (17 +/- 3 mmHg). Etomidate did not affect blood pressure in alpha2B-KO or alpha2AB-KO mice. In membranes from HEK293 cells transfected with alpha2-receptors, etomidate inhibited binding of the alpha2-antagonist, [3H]RX821002, with higher potency from alpha2B- and alpha2C-receptors than from alpha2A-receptors (Ki alpha2A 208 microm, alpha2B 26 microm, alpha2C 56 microm). In alpha2B-receptor-expressing HEK293 cells, etomidate rapidly increased phosphorylation of the extracellular signal-related kinases ERK1/2. Conclusions These results indicate that etomidate acts as an agonist at alpha2-adrenoceptors, which appears in vivo primarily as an alpha2B-receptor-mediated increase in blood pressure. This effect of etomidate may contribute to the cardiovascular stability of patients after induction of anesthesia with etomidate.


Sign in / Sign up

Export Citation Format

Share Document