scholarly journals The Correlation Between Cell and Nucleus Size is Explained by an Eukaryotic Cell Growth Model

2021 ◽  
Author(s):  
Yufei Wu ◽  
Paul Janmey ◽  
Sean X. Sun

In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influences the cell growth rate as well as the cytoplasm/nucleoplasm ratio. Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cytoplasm/nucleoplasm ratio, the cell must optimally control groups of kinetic parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, using an extension of our model and single cell RNAseq data, it is possible to construct a detailed proteome distribution, provided that a cell division mechanism is known.

1995 ◽  
Vol 82 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Michael D. Dan ◽  
Elizabeth M. Earley ◽  
Mark C. Griffin ◽  
Pradip K. Maiti ◽  
Ashok K. Prashar ◽  
...  

✓ The purpose of this study was to ascertain how various growth parameters may influence the labeling of SK-MG-1, a human glioma cell line, by BT32/A6, a human immunoglobulin M monoclonal antibody (MAb). By growing SKMG-1 cells at different culture split ratios, significant trends in cell growth rate, culture viability, and cell cycle state were produced. Labeling of SK-MG-1 cells by BT32/A6, however, was shown to be unaffected by culture split ratio (p > 0.05) and is therefore independent of cell growth rate, culture viability, and cell cycle state. Using flow cytometry and fluorescence-activated cell sorting, BT32/A6 was shown to label a cell surface antigen on viable, clonogenic cells of SK-MG-1. Approximately 100% of SK-MG-1 cells were shown by flow cytometry to express the BT32/A6 antigen. The recognition of a glioma-associated, cell cycle-independent surface antigen by MAb BT32/A6 makes it a promising candidate for further studies aimed at elucidating its usefulness as an adjunct in the treatment of human malignant gliomas.


2015 ◽  
Author(s):  
Nikolai Slavov

About a decade ago, I observed that as the cell growth rate increases, mRNAs coding for ribosomal proteins are transcriptionally induced to varying degrees. This observation puzzled me as it defied my expectation that faster growing cells meet their demands for increased protein synthesis by simply inducing all ribosomal proteins to the same degree to make more ribosomes. These initial data were limited to mRNA levels and thus too indirect to make concrete conclusions about ribosomal structure and function. This commentary outlines my trajectory investigating this puzzle in search of more direct data.


2015 ◽  
Author(s):  
Nikolai Slavov

About a decade ago, I observed that as the cell growth rate increases, mRNAs coding for ribosomal proteins are transcriptionally induced to varying degrees. This observation puzzled me as it defied my expectation that faster growing cells meet their demands for increased protein synthesis by simply inducing all ribosomal proteins to the same degree to make more ribosomes. These initial data were limited to mRNA levels and thus too indirect to make concrete conclusions about ribosomal structure and function. This commentary outlines my trajectory investigating this puzzle in search of more direct data.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 109-109
Author(s):  
Matthew S Crouse ◽  
Wellison Jarles Da Silva Diniz ◽  
Joel Caton ◽  
Carl R Dahlen ◽  
Lawrence P Reynolds ◽  
...  

Abstract We hypothesized that supplementation of one-carbon metabolites (OCM: methionine, folate, choline, and vitamin B12) to bovine embryonic tracheal fibroblasts in divergent glucose media would alter cytosine methylation, and alterations in cytosine methylation will reflect biological processes matching previously improved mitochondrial respiration, cell proliferation, and cell growth rate data. Cells were cultured with 1g/L glucose (Low) or 4.5g/L glucose (High). Control medium (CON) contained basal concentrations of folate (0.001g/L), choline (0.001g/L), vitamin B12 (4µg/L), and methionine (0.015g/L). The OCM were supplemented at 2.5 and 5 times (2.5X and 5X, respectively) the CON media, except methionine was limited to 2X across all supplemented treatments. Cells were passaged three times in their treatment media before DNA extraction. Reduced representation bisulfite sequencing was adopted to analyze and compare the genomic methylation patterns within and across treatments using edgeR. Biological processes (BP) were retrieved based on the nearest genes of differentially methylated cytosines (P < 0.01) for each comparison between treatments. In both Low and High treatments, greater OCM increased the proportion of hypomethylated vs. hypermethylated cytosines. Functional analyses pointed out positive regulation of BP related to energy metabolism, except for the contrasts within the High group. Among the BP, we can highlight positive regulation of: GTPase activity, catalytic activity, molecular function, protein modification processes, phosphorylation, protein phosphorylation, cellular protein metabolic processes, MAPK cascade, and metabolic processes. These data support previously reported results from this experiment that showed increased mitochondrial respiration, cell proliferation, and growth rates with increasing OCM levels. We interpret these data to imply that when energy and OCM requirements are met for growth and basal methylation levels, DNA methylation levels decrease which may allow for greater transcription. Thus, OCM can be utilized for other functions such as polyamine synthesis, nucleotide synthesis, energetic metabolites, and phosphatidylcholine synthesis. USDA is an equal opportunity provider and employer.


1993 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Sai C. Chan ◽  
Shi-Hua Li ◽  
William R. Henderson ◽  
Jon M. Hanifin

2020 ◽  
Author(s):  
Xuan Jiang ◽  
Amit Prabhakar ◽  
Stephanie M. Van der Voorn ◽  
Prajakta Ghatpande ◽  
Barbara Celona ◽  
...  

AbstractRibosome biogenesis in eukaryotes requires stoichiometric production and assembly of 80 ribosomal proteins (RPs) and 4 ribosomal RNAs, and its rate must be coordinated with cellular growth. The indispensable regulator of RP biosynthesis is the 5’-terminal oligopyrimidine (TOP) motif, spanning the transcription start site of all RP genes. Here we show that the Microprocessor complex, previously linked to the first step of processing microRNAs (miRNAs), coregulates RP expression by binding the TOP motif of nascent RP mRNAs and stimulating transcription elongation via resolution of DNA/RNA hybrids. Cell growth arrest triggers nuclear export and degradation of the Microprocessor protein Drosha by the E3 ubiquitin ligase Nedd4, accumulation of DNA/RNA hybrids at RP gene loci, decreased RP synthesis, and ribosome deficiency, hence synchronizing ribosome production with cell growth. Conditional deletion of Drosha in erythroid progenitors phenocopies human ribosomopathies, in which ribosomal insufficiency leads to anemia. Outlining a miRNA-independent role of the Microprocessor complex at the interphase between cell growth and ribosome biogenesis offers a new paradigm by which cells alter their protein biosynthetic capacity and cellular metabolism.


2019 ◽  
Vol 88 (1) ◽  
pp. 281-306 ◽  
Author(s):  
Jochen Baßler ◽  
Ed Hurt

Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo–electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.


1973 ◽  
Vol 59 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Brian Storrie

In an attempt to understand further the mechanism of the morphological and functional "reverse transformation" of CHO-K1 cells induced by dibutyryl adenosine cyclic 3',5'-monophosphate (cAMP) and testosterone, the kinetics of variation in the susceptibility of cells to rounding after the addition or deletion of dibutyryl cAMP and testosterone have been investigated. Changes in susceptibility to cell rounding upon removal of divalent cations or pulse exposure to concanavalin A were complete within 0.5–1 h after addition or deletion of drug. In comparison, the gross conversion of CHO-K1 cells from epithelial- to fibroblast-like morphology after drug treatment or the converse change after drug removal required 8 or 4 h, respectively. The effects on cell rounding are not caused by an effect of dibutyryl cAMP upon cell growth rate. Inhibitor experiments indicate that the changes investigated do not require continued RNA or protein synthesis and are not prevented by agents which depolymerize microtubules.


Sign in / Sign up

Export Citation Format

Share Document