Human monoclonal antibody BT32/A6 and a cell cycle—independent glioma-associated surface antigen

1995 ◽  
Vol 82 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Michael D. Dan ◽  
Elizabeth M. Earley ◽  
Mark C. Griffin ◽  
Pradip K. Maiti ◽  
Ashok K. Prashar ◽  
...  

✓ The purpose of this study was to ascertain how various growth parameters may influence the labeling of SK-MG-1, a human glioma cell line, by BT32/A6, a human immunoglobulin M monoclonal antibody (MAb). By growing SKMG-1 cells at different culture split ratios, significant trends in cell growth rate, culture viability, and cell cycle state were produced. Labeling of SK-MG-1 cells by BT32/A6, however, was shown to be unaffected by culture split ratio (p > 0.05) and is therefore independent of cell growth rate, culture viability, and cell cycle state. Using flow cytometry and fluorescence-activated cell sorting, BT32/A6 was shown to label a cell surface antigen on viable, clonogenic cells of SK-MG-1. Approximately 100% of SK-MG-1 cells were shown by flow cytometry to express the BT32/A6 antigen. The recognition of a glioma-associated, cell cycle-independent surface antigen by MAb BT32/A6 makes it a promising candidate for further studies aimed at elucidating its usefulness as an adjunct in the treatment of human malignant gliomas.

2021 ◽  
Author(s):  
Yufei Wu ◽  
Paul Janmey ◽  
Sean X. Sun

In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influences the cell growth rate as well as the cytoplasm/nucleoplasm ratio. Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cytoplasm/nucleoplasm ratio, the cell must optimally control groups of kinetic parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, using an extension of our model and single cell RNAseq data, it is possible to construct a detailed proteome distribution, provided that a cell division mechanism is known.


2016 ◽  
Vol 15 (4) ◽  
pp. 53-58
Author(s):  
N. A. Lyzhko ◽  
V. A. Misyurin ◽  
Y. P. Finashutina ◽  
T. V. Akhlynina ◽  
L. A. Kesaeva ◽  
...  

Introduction. PRAME protein is a promising target for cancer immunotherapy. PRAME is not expressed in normal tissues, but active in number of the tumor types. We have developed the mouse monoclonal antibodies 5D3F2 and 6H8F12 against PRAME epitopes. Aim. To determine the effects provided by the monoclonal antibodies 5D3F2 and 6H8F12 against the cells with different levels of PRAME gene expression. Materials and methods. We used different cell lines: NOMO-1 and WI-38 with low levels of expression PRAME; THP-1 with intermediate level of PRAME expression; K562 and WI-38-PRAME with high level of PRAME expression. We incubated these cell lines in the presence of monoclonal antibodies 5D3F2 and 6H8F12. The final concentration of monoclonal antibodies in culture varied from 6 pg/ml to 120 mcg/ml. The live cells were counted at the 24, 48 and 72 hours after incubation. The number of dead cells was evaluated by the MTT-test after 24 hours. Results. Cell growth rate is significanely decreased during incubation with monoclonal antibodies. This effect is correlated with increase of monoclonal antibody concentrations (Pearson coefficient 0,67;p = 0,0219). K562 growth rate was much less compared to the THP-1’s rate (p = 0,0061), NOMO-1 (p = 0,0005) and WI-38 (p = 0,0002) in the presence of the same amount of monoclonal antibody 6H8F12. K562 cell growth rate was lower than the WI-38-PRAME’s rate (p = 0,0027), despite the comparable level of PRAME expression. Effects of monoclonal antibody 5D3F2 and 6H8F12 were similar (p = 0,3946). According to the MTT-test, the comparable number of death cells in K562 and WI-38-PRAME was observed (p = 0,8405). Under the same conditions the amount of death cells in THP-1 was smaller than K562 (p = 0,6335). To compare with K562, fewer cells died in NOMO-1 and WI-38 (p = 0,0026 and p = 0,0005, respectively). Conclusion. It was shown that monoclonal antibody 5D3F2 and 6H8F12 exhibit a significant cytotoxic effect against PRAME-express-ing cells. In case of higher levels of PRAME expression the cytotoxic effect was stronger.


2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 109-109
Author(s):  
Matthew S Crouse ◽  
Wellison Jarles Da Silva Diniz ◽  
Joel Caton ◽  
Carl R Dahlen ◽  
Lawrence P Reynolds ◽  
...  

Abstract We hypothesized that supplementation of one-carbon metabolites (OCM: methionine, folate, choline, and vitamin B12) to bovine embryonic tracheal fibroblasts in divergent glucose media would alter cytosine methylation, and alterations in cytosine methylation will reflect biological processes matching previously improved mitochondrial respiration, cell proliferation, and cell growth rate data. Cells were cultured with 1g/L glucose (Low) or 4.5g/L glucose (High). Control medium (CON) contained basal concentrations of folate (0.001g/L), choline (0.001g/L), vitamin B12 (4µg/L), and methionine (0.015g/L). The OCM were supplemented at 2.5 and 5 times (2.5X and 5X, respectively) the CON media, except methionine was limited to 2X across all supplemented treatments. Cells were passaged three times in their treatment media before DNA extraction. Reduced representation bisulfite sequencing was adopted to analyze and compare the genomic methylation patterns within and across treatments using edgeR. Biological processes (BP) were retrieved based on the nearest genes of differentially methylated cytosines (P < 0.01) for each comparison between treatments. In both Low and High treatments, greater OCM increased the proportion of hypomethylated vs. hypermethylated cytosines. Functional analyses pointed out positive regulation of BP related to energy metabolism, except for the contrasts within the High group. Among the BP, we can highlight positive regulation of: GTPase activity, catalytic activity, molecular function, protein modification processes, phosphorylation, protein phosphorylation, cellular protein metabolic processes, MAPK cascade, and metabolic processes. These data support previously reported results from this experiment that showed increased mitochondrial respiration, cell proliferation, and growth rates with increasing OCM levels. We interpret these data to imply that when energy and OCM requirements are met for growth and basal methylation levels, DNA methylation levels decrease which may allow for greater transcription. Thus, OCM can be utilized for other functions such as polyamine synthesis, nucleotide synthesis, energetic metabolites, and phosphatidylcholine synthesis. USDA is an equal opportunity provider and employer.


1993 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Sai C. Chan ◽  
Shi-Hua Li ◽  
William R. Henderson ◽  
Jon M. Hanifin

1999 ◽  
Vol 112 (6) ◽  
pp. 939-946 ◽  
Author(s):  
C.R. Carlson ◽  
B. Grallert ◽  
T. Stokke ◽  
E. Boye

Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.


2020 ◽  
Vol 117 (44) ◽  
pp. 27388-27399
Author(s):  
Xili Liu ◽  
Seungeun Oh ◽  
Leonid Peshkin ◽  
Marc W. Kirschner

The fine balance of growth and division is a fundamental property of the physiology of cells, and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single cell over time. We address these limitations by demonstrating a computationally enhanced methodology for quantitative phase microscopy for adherent cells, using improved image processing algorithms and automated cell-tracking software. Accuracy has been improved more than twofold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth, previously unmeasurable. With these methodological and analytical improvements, in several cell lines we document a remarkable oscillation in growth rate, occurring throughout the cell cycle, coupled to cell division or birth yet independent of cell cycle progression. We expect that further exploration with this advanced tool will provide a better understanding of growth rate regulation in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document