82 Methyl Donor Supplementation Alters Cytosine Methylation and Biological Processes of Cells Cultured in Divergent Glucose Media Reflecting Improvements in Mitochondrial Respiration and Cell Growth Rate

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 109-109
Author(s):  
Matthew S Crouse ◽  
Wellison Jarles Da Silva Diniz ◽  
Joel Caton ◽  
Carl R Dahlen ◽  
Lawrence P Reynolds ◽  
...  

Abstract We hypothesized that supplementation of one-carbon metabolites (OCM: methionine, folate, choline, and vitamin B12) to bovine embryonic tracheal fibroblasts in divergent glucose media would alter cytosine methylation, and alterations in cytosine methylation will reflect biological processes matching previously improved mitochondrial respiration, cell proliferation, and cell growth rate data. Cells were cultured with 1g/L glucose (Low) or 4.5g/L glucose (High). Control medium (CON) contained basal concentrations of folate (0.001g/L), choline (0.001g/L), vitamin B12 (4µg/L), and methionine (0.015g/L). The OCM were supplemented at 2.5 and 5 times (2.5X and 5X, respectively) the CON media, except methionine was limited to 2X across all supplemented treatments. Cells were passaged three times in their treatment media before DNA extraction. Reduced representation bisulfite sequencing was adopted to analyze and compare the genomic methylation patterns within and across treatments using edgeR. Biological processes (BP) were retrieved based on the nearest genes of differentially methylated cytosines (P < 0.01) for each comparison between treatments. In both Low and High treatments, greater OCM increased the proportion of hypomethylated vs. hypermethylated cytosines. Functional analyses pointed out positive regulation of BP related to energy metabolism, except for the contrasts within the High group. Among the BP, we can highlight positive regulation of: GTPase activity, catalytic activity, molecular function, protein modification processes, phosphorylation, protein phosphorylation, cellular protein metabolic processes, MAPK cascade, and metabolic processes. These data support previously reported results from this experiment that showed increased mitochondrial respiration, cell proliferation, and growth rates with increasing OCM levels. We interpret these data to imply that when energy and OCM requirements are met for growth and basal methylation levels, DNA methylation levels decrease which may allow for greater transcription. Thus, OCM can be utilized for other functions such as polyamine synthesis, nucleotide synthesis, energetic metabolites, and phosphatidylcholine synthesis. USDA is an equal opportunity provider and employer.

2010 ◽  
Vol 30 (4) ◽  
pp. 277-283 ◽  
Author(s):  
Yan Zeng ◽  
Yan Li ◽  
Ri-Sheng Chen ◽  
Xin He ◽  
Lei Yang ◽  
...  

KSHV (Kaposi's sarcoma-associated herpesvirus), or HHV-8 (human herpesvirus 8), is associated with the pathogenesis of KS, the most common AIDS-related malignancy. xCT (functional subunit of the cystine/glutamate transporter xc− system) is known as the HHV-8 fusion-entry receptor as well as an oncogenic protein. How the xCT triggers the signal transduction of HHV-8 infection and the cell proliferation remains incomplete. We found that xCT was overexpressed in KS tissues and HHV-8-positive BCBL-1 cells. When xCT cDNA plasmids were transfected into the HHV-8-negative BJAB cells, the expression of 14-3-3β and cell growth rate were increased. In contrast, the expression of 14-3-3β and the cell growth rate of HHV-8-positive BCBL-1 cells were suppressed by either xCT siRNA (short interfering RNA) or an xCT inhibitor, sulfsalazine. These results suggest that 14-3-3β is a downstream effector of xCT in KS to mediate the cell proliferation.


1993 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Sai C. Chan ◽  
Shi-Hua Li ◽  
William R. Henderson ◽  
Jon M. Hanifin

1973 ◽  
Vol 59 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Brian Storrie

In an attempt to understand further the mechanism of the morphological and functional "reverse transformation" of CHO-K1 cells induced by dibutyryl adenosine cyclic 3',5'-monophosphate (cAMP) and testosterone, the kinetics of variation in the susceptibility of cells to rounding after the addition or deletion of dibutyryl cAMP and testosterone have been investigated. Changes in susceptibility to cell rounding upon removal of divalent cations or pulse exposure to concanavalin A were complete within 0.5–1 h after addition or deletion of drug. In comparison, the gross conversion of CHO-K1 cells from epithelial- to fibroblast-like morphology after drug treatment or the converse change after drug removal required 8 or 4 h, respectively. The effects on cell rounding are not caused by an effect of dibutyryl cAMP upon cell growth rate. Inhibitor experiments indicate that the changes investigated do not require continued RNA or protein synthesis and are not prevented by agents which depolymerize microtubules.


2009 ◽  
Vol 45 (5) ◽  
pp. 525-532 ◽  
Author(s):  
I. S. Tsyrenzhapova ◽  
V. G. Doroshenko ◽  
L. G. Airich ◽  
A. S. Mironov ◽  
S. V. Mashko

2021 ◽  
Author(s):  
Yufei Wu ◽  
Paul Janmey ◽  
Sean X. Sun

In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influences the cell growth rate as well as the cytoplasm/nucleoplasm ratio. Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cytoplasm/nucleoplasm ratio, the cell must optimally control groups of kinetic parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, using an extension of our model and single cell RNAseq data, it is possible to construct a detailed proteome distribution, provided that a cell division mechanism is known.


2020 ◽  
Author(s):  
Wei Han ◽  
Guo-liang Shen

Abstract Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing researches showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles. Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, functional enrichment analysis of MeDEGs were performed. STRING and Cytoscape were used to describe protein-protein interaction(PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Finally, we conducted gene set enrichment analysis (GSEA) of hub genes. Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precise medicine.


Sign in / Sign up

Export Citation Format

Share Document