scholarly journals Genetic variation in ALDH4A1 predicts muscle health over the lifespan and across species

2021 ◽  
Author(s):  
Osvaldo Villa ◽  
Nicole L. Stuhr ◽  
Chia-An Yen ◽  
Eileen M. Crimmins ◽  
Thalida Em Arpawong ◽  
...  

Environmental stress can negatively impact organismal aging, however, the long-term impact of endogenously derived reactive oxygen species from normal cellular metabolism remains less clear. Here we define the evolutionarily conserved mitochondrial enzyme ALH-6/ALDH4A1 as a biomarker for age-related changes in muscle health by combining C. elegans genetics and a gene-wide association study (GeneWAS) from aged human participants of the US Health and Retirement Study (HRS)1–4. In a screen for mutations that activate SKN-1-dependent oxidative stress responses in the muscle of C. elegans5–7, we identified 96 independent genetic mutants harboring loss-of-function alleles of alh-6, exclusively. These genetic mutations map across the ALH-6 polypeptide, which lead to age-dependent loss of muscle health. Intriguingly, genetic variants in ALDH4A1 differentially impact age-related muscle function in humans. Taken together, our work uncovers mitochondrial alh-6/ALDH4A1 as a critical component of normal muscle aging across species and a predictive biomarker for muscle health over the lifespan.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mercedes M. Pérez-Jiménez ◽  
José M. Monje-Moreno ◽  
Ana María Brokate-Llanos ◽  
Mónica Venegas-Calerón ◽  
Alicia Sánchez-García ◽  
...  

AbstractAging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Author(s):  
Mengjiao Hao ◽  
Zhikang Zhang ◽  
Yijun Guo ◽  
Huihao Zhou ◽  
Qiong Gu ◽  
...  

Abstract AMP-activated protein kinase (AMPK) is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in human body. As early as the 1970s, RbCl has been was reported to have neuroprotective effects. In this work, we report the anti-aging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (1) RbCl does increase the lifespan and enhance stress resistance in C. elegans without disturbing their fecundity. (2) RbCl induces superoxide dismutase (SOD) expression, which is essential for its anti-aging and anti-stress effect. (3) AAK-2 and DAF-16 are essential to the anti-aging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging through regulating AMPK/FOXO pathway. RbCl can be a promising agent against aging related diseases.


2020 ◽  
Author(s):  
Avijit Mallick ◽  
Ayush Ranawade ◽  
Bhagwati P Gupta

SUMMARYAging is a significant risk factor for several diseases. Studies have uncovered multiple signaling pathways that modulate the process of aging including the Insulin/IGF-1 signaling (IIS). In C. elegans the key regulator of IIS is DAF-16/FOXO whose activity is regulated by phosphorylation. A major kinase involved in DAF-16-mediated lifespan extension is the AMPK catalytic subunit homolog, AAK-2. In this study, we demonstrate a novel role of PRY-1/Axin in AAK-2 activation to regulate DAF-16 function. The pry-1 transcriptome contains many genes associated with aging and muscle function. Consistent with this, pry-1 is strongly expressed in muscles and muscle-specific overexpression of pry-1 extends the lifespan, delays muscle aging, and improves mitochondrial morphology in DAF-16-dependent manner. Furthermore, PRY-1 is necessary for AAK-2 phosphorylation. Together, our data demonstrate a crucial role of PRY-1 in maintaining the lifespan and muscle health. Since muscle health declines with age, our study offers new possibilities to manipulate Axin function to delay muscle aging and improve lifespan.


2019 ◽  
Author(s):  
Mercedes M. Pérez-Jiménez ◽  
Paula Sansigre ◽  
Amador Valladares ◽  
Mónica Venegas-Calerón ◽  
Alicia Sánchez-García ◽  
...  

Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity by a still not fully understood mechanism. We find that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones and increases longevity. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) and is not additive to the longevity of germline-less mutants. Noteworthy, sul-2 mutations do not affect fertility. Thus, STS inactivation affects the germline signalling process regulating longevity. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of germline longevity by environmental cues. We also demonstrate that treatment with the specific STS inhibitor STX64, reproduces the longevity phenotype of sul-2 mutants. Remarkably, STS inhibition by either mutation or drug treatment ameliorates protein aggregation diseases in C. elegans models of Parkinson, Huntington and Alzheimer, as well as Alzheimer disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors for the treatment of aging and aging related diseases.


2018 ◽  
Vol 19 (11) ◽  
pp. 3661 ◽  
Author(s):  
Minh Nguyen ◽  
Milán Somogyvári ◽  
Csaba Sőti

Sirtuin 1 (SIRT1) othologs are ubiquitous NAD+-dependent deacetylases that act as nutrient sensors and modulate metabolism and stress responses in diverse organisms. Both mammalian SIRT1 and Caenorhabditis elegans SIR-2.1 have been implicated in dietary restriction, longevity, and healthspan. Hsp90 is an evolutionarily conserved molecular chaperone that stabilizes a plethora of signaling ’client’ proteins and regulates fundamental biological processes. Here we report that Hsp90 is required for conformational stabilization of SIRT1 and SIR-2.1. We find that inhibition of Hsp90 by geldanamycin (GA) induces the depletion of mammalian SIRT1 protein in a concentration and time dependent manner in COS-7 and HepG2 cells. In contrast to SIRT1, SIRT2 level remains unchanged by GA treatment, reflecting a specific Hsp90 SIRT1 interaction. Hsp90 inhibition leads to the destabilization and proteasomal degradation of SIRT1. Moreover, we observe a GA-sensitive physical interaction between SIRT1 and Hsp90 by immunoprecipitation. We also demonstrate that hsp-90 gene silencing also induces SIR-2.1 protein depletion and proteasomal degradation in C. elegans. Our findings identify metazoan SIRT1 orthologs as Hsp90 clients and reveal a novel crosstalk between the proteostasis and nutrient signaling networks, which may have implications in various age related diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wen-Yu Zeng ◽  
Lin Tan ◽  
Cong Han ◽  
Zhuo-Ya Zheng ◽  
Gui-Sheng Wu ◽  
...  

Trigonelline is the main alkaloid with bioactivity presented in fenugreek, which was used in traditional medicine in Asian countries for centuries. It is reported that trigonelline has anti-inflammatory, anti-oxidant, and anti-pathogenic effects. We are wondering whether trigonelline have anti-aging effect. We found that 50 μM of trigonelline had the best anti-aging activity and could prolong the lifespan of Caenorhabditis elegans (C. elegans) by about 17.9%. Trigonelline can enhance the oxidative, heat, and pathogenic stress resistance of C. elegans. Trigonelline could also delay the development of neurodegenerative diseases, such as AD, PD, and HD, in models of C. elegans. Trigonelline could not prolong the lifespan of long-lived worms with loss-of-function mutations in genes regulating energy and nutrition, such as clk-1, isp-1, eat-2, and rsks-1. Trigonelline requires daf-16, hsf-1, and aak-2 to extend the lifespan of C. elegans. Trigonelline can also up-regulate the expression of daf-16 and hsf-1 targeted downstream genes, such as sod-3, gst-4, hsp-16.1, and hsp-12.6. Our results can be the basis for developing trigonelline-rich products with health benefits, as well as for further research on the pharmacological usage of trigonelline.


2018 ◽  
Author(s):  
Chia-An Yen ◽  
Dana L. Ruter ◽  
Christian D. Turner ◽  
Shanshan Pang ◽  
Sean P. Curran

ABSTRACTExposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which reduces competitive fitness. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism, leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chia-An Yen ◽  
Dana L Ruter ◽  
Christian D Turner ◽  
Shanshan Pang ◽  
Sean P Curran

Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.


2021 ◽  
Vol 118 (16) ◽  
pp. e2016698118
Author(s):  
Natalie Acker ◽  
Harold Smith ◽  
Claire Devine ◽  
Sharon L. Oltjen ◽  
Sofia Tsiropoulou ◽  
...  

Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


Sign in / Sign up

Export Citation Format

Share Document