scholarly journals Chronic sodium bromide treatment relieves autistic-like behavioral deficits in three mouse models of autism

2021 ◽  
Author(s):  
Cécile Derieux ◽  
Audrey Léauté ◽  
Agathe Brugoux ◽  
Déborah Jacaz ◽  
Jean-Philippe Pin ◽  
...  

AbstractAutism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/- , Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.

Author(s):  
Cécile Derieux ◽  
Sébastien Roux ◽  
Thierry Plouvier ◽  
Audrey Léauté ◽  
Agathe Brugoux ◽  
...  

Chronic sodium bromide relieves autistic-like deficits in the Oprm1 mouse model of autism and modulates the activity of serotonin and dopamine receptors in vitro C. DERIEUX 1 , S. ROUX 1 , A. LEAUTE 1 , T. PLOUVIER 2 , J.A.J. BECKER 1 , J. LE MERRER 1 1 Déficits de Récompense, GPCRs et Sociabilité, Physiologie de la Reproduction et des Comportements, INRA UMR0085, CNRS UMR7247, Université de Tours, Inserm ; 37380 Nouzilly, France 2 Térali Innov, 37230 Fondettes, France Corresponding author : [email protected] Autism spectrum disorders (ASD) are complex neurodevelopmental diseases whose diagnosis lies on the detection of impaired social skills together with restricted and repetitive behavior and interests (DSM-5). Although the etiology of ASD remains mostly unknown, impaired excitation/inhibition ratio appears as a common mechanistic feature. Bromide ion is known to reduce hyperexcitability, possibly by competing with chloride ions at channels and transporters and may thus have therapeutic potential in ASD. Aims : We evaluated the therapeutic potential of bromide ion in the Oprm1 -/- mouse model of ASD and the molecular mechanisms involved in bromide treatment, notably effects on GPCRs. Methods : In vivo , we first assessed the effect of chronically administered sodium bromide on autistic-like behavioral deficits and performed RT-qPCR on brain structures known to be involved in ASD. In vitro , we evaluated the impact of bromide ion on G-protein mediated signaling of serotonin and dopamine receptors. Results : In vivo , sodium bromide (30 to 500 mg/Kg) dose-dependently improved social interaction and preference, reduced stereotypies and decreased anxiety. Bromide also impacts the expression of genes coding for some GPCRs, chloride transporters and GABA A subunits. In vitro , bromide behaves as a positive allosteric modulator of 5-HT 6 , 5-HT 7 and D1 receptors but not 5-HT 4 and D2 receptors. Conclusions : The beneficial effects of bromide administration in a genetic murine model of ASD and its impact on both gene expression and GPCR pharmacology predicts high translational potential in patients with autism, despite high heterogeneity in etiology and symptoms.


Author(s):  
Cécile Derieux ◽  
Sébastien Roux ◽  
Thierry Plouvier ◽  
Audrey Léauté ◽  
Agathe Brugoux ◽  
...  

Chronic sodium bromide relieves autistic-like deficits in the Oprm1 mouse model of autism and modulates the activity of serotonin and dopamine receptors in vitro C. DERIEUX 1 , S. ROUX 1 , A. LEAUTE 1 , T. PLOUVIER 2 , J.A.J. BECKER 1 , J. LE MERRER 1 1 Déficits de Récompense, GPCRs et Sociabilité, Physiologie de la Reproduction et des Comportements, INRA UMR0085, CNRS UMR7247, Université de Tours, Inserm ; 37380 Nouzilly, France 2 Térali Innov, 37230 Fondettes, France Corresponding author : [email protected] Autism spectrum disorders (ASD) are complex neurodevelopmental diseases whose diagnosis lies on the detection of impaired social skills together with restricted and repetitive behavior and interests (DSM-5). Although the etiology of ASD remains mostly unknown, impaired excitation/inhibition ratio appears as a common mechanistic feature. Bromide ion is known to reduce hyperexcitability, possibly by competing with chloride ions at channels and transporters and may thus have therapeutic potential in ASD. Aims : We evaluated the therapeutic potential of bromide ion in the Oprm1 -/- mouse model of ASD and the molecular mechanisms involved in bromide treatment, notably effects on GPCRs. Methods : In vivo , we first assessed the effect of chronically administered sodium bromide on autistic-like behavioral deficits and performed RT-qPCR on brain structures known to be involved in ASD. In vitro , we evaluated the impact of bromide ion on G-protein mediated signaling of serotonin and dopamine receptors. Results : In vivo , sodium bromide (30 to 500 mg/Kg) dose-dependently improved social interaction and preference, reduced stereotypies and decreased anxiety. Bromide also impacts the expression of genes coding for some GPCRs, chloride transporters and GABA A subunits. In vitro , bromide behaves as a positive allosteric modulator of 5-HT 6 , 5-HT 7 and D1 receptors but not 5-HT 4 and D2 receptors. Conclusions : The beneficial effects of bromide administration in a genetic murine model of ASD and its impact on both gene expression and GPCR pharmacology predicts high translational potential in patients with autism, despite high heterogeneity in etiology and symptoms.


2012 ◽  
Vol 209 (13) ◽  
pp. 2501-2513 ◽  
Author(s):  
Jiaqi Yao ◽  
Daniel Ho ◽  
Noel Y. Calingasan ◽  
Nina H. Pipalia ◽  
Michael T. Lin ◽  
...  

There is extensive evidence that cholesterol and membrane lipids play a key role in Alzheimer disease (AD) pathogenesis. Cyclodextrins (CD) are cyclic oligosaccharide compounds widely used to bind cholesterol. Because CD exerts significant beneficial effects in Niemann-Pick type C disease, which shares neuropathological features with AD, we examined the effects of hydroxypropyl-β-CD (HP-β-CD) in cell and mouse models of AD. Cell membrane cholesterol accumulation was detected in N2a cells overexpressing Swedish mutant APP (SwN2a), and the level of membrane cholesterol was reduced by HP-β-CD treatment. HP-β-CD dramatically lowered the levels of Aβ42 in SwN2a cells, and the effects were persistent for 24 h after withdrawal. 4 mo of subcutaneous HP-β-CD administration significantly improved spatial learning and memory deficits in Tg19959 mice, diminished Aβ plaque deposition, and reduced tau immunoreactive dystrophic neurites. HP-β-CD lowered levels of Aβ42 in part by reducing β cleavage of the APP protein, and it also up-regulated the expression of genes involved in cholesterol transport and Aβ clearance. This is the first study to show neuroprotective effects of HP-β-CD in a transgenic mouse model of AD, both by reducing Aβ production and enhancing clearance mechanisms, which suggests a novel therapeutic strategy for AD.


2020 ◽  
Vol 10 (10) ◽  
pp. 680
Author(s):  
Sanae Tanaka ◽  
Aiko Komagome ◽  
Aya Iguchi-Sherry ◽  
Akiko Nagasaka ◽  
Teruko Yuhi ◽  
...  

Autism spectrum disorder (ASD) occurs in 1 in 160 children worldwide. Individuals with ASD tend to be unique in the way that they comprehend themselves and others, as well as in the way that they interact and socialize, which can lead to challenges with social adaptation. There is currently no medication to improve the social deficit of children with ASD, and consequently, behavioral and complementary/alternative intervention plays an important role. In the present pilot study, we focused on the neuroendocrinological response to participatory art activities, which are known to have a positive effect on emotion, self-expression, sociability, and physical wellbeing. We collected saliva from 12 children with ASD and eight typically developed (TD) children before and after a visual art-based participatory art workshop to measure the levels of oxytocin, a neuropeptide involved in a wide range of social behaviors. We demonstrated that the rate of increase in salivary oxytocin following art activities in ASD children was significantly higher than that in TD children. In contrast, the change rate of salivary cortisol after participatory art activities was similar between the two groups. These results suggest that the beneficial effects of participatory art activities may be partially mediated by oxytocin release, and may have therapeutic potential for disorders involving social dysfunction.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuxin Fan ◽  
Jiayu Peng ◽  
Jiacheng Wu ◽  
Ping Zhou ◽  
Ruijie He ◽  
...  

Abstract Background Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. Results In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. Conclusions Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


2021 ◽  
Vol 10 (2) ◽  
pp. 366
Author(s):  
Anke Hoffmann ◽  
Dietmar Spengler

Chromodomain Helicase DNA-binding 8 (CHD8) is a high confidence risk factor for autism spectrum disorders (ASDs) and the genetic cause of a distinct neurodevelopmental syndrome with the core symptoms of autism, macrocephaly, and facial dysmorphism. The role of CHD8 is well-characterized at the structural, biochemical, and transcriptional level. By contrast, much less is understood regarding how mutations in CHD8 underpin altered brain function and mental disease. Studies on various model organisms have been proven critical to tackle this challenge. Here, we scrutinize recent advances in this field with a focus on phenotypes in transgenic animal models and highlight key findings on neurodevelopment, neuronal connectivity, neurotransmission, synaptic and homeostatic plasticity, and habituation. Against this backdrop, we further discuss how to improve future animal studies, both in terms of technical issues and with respect to the sex-specific effects of Chd8 mutations for neuronal and higher-systems level function. We also consider outstanding questions in the field including ‘humanized’ mice models, therapeutic interventions, and how the use of pluripotent stem cell-derived cerebral organoids might help to address differences in neurodevelopment trajectories between model organisms and humans.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Natasha Bertelsen ◽  
◽  
Isotta Landi ◽  
Richard A. I. Bethlehem ◽  
Jakob Seidlitz ◽  
...  

AbstractSocial-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here, we developed a phenotypic stratification model that makes highly accurate (97–99%) out-of-sample SC = RRB, SC > RRB, and RRB > SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n = 509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC > RRB and visual association circuitry in SC = RRB. The SC = RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.


Sign in / Sign up

Export Citation Format

Share Document