scholarly journals Multi-modal single-cell sequencing identifies cellular immunophenotypes associated with juvenile dermatomyositis disease activity

Author(s):  
Jessica Neely ◽  
George Hartoularos ◽  
Daniel Bunis ◽  
Yang Sun ◽  
David Lee ◽  
...  

Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient biomarkers and treatments, in part, due to incomplete knowledge of the cell types mediating disease. We investigated immunophenotypes and cell-specific genes associated with disease activity using multiplexed RNA and protein single-cell sequencing applied to PBMCs from 4 treatment-naive JDM (TN-JDM) subjects at baseline, 2, 4, and 6 months and 4 subjects with inactive disease. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within monocyte, NK, CD8+ effector T and naive B populations. The proportion of CD16+ monocytes was reduced in TN-JDM, and naive B cells were expanded. Cell-type differential gene expression analysis and hierarchical clustering identified a pan-cell-type IFN gene signature over-expressed in TN-JDM in all cell types and correlated with disease activity. TN-JDM monocytes displayed an inflammatory state: CD16+ monocytes expressed the highest IFN gene score and differential protein expression of adhesion molecules, CD49d and CD56, compared to CD14+ inflammatory monocytes. A transitional B cell population expressing higher CD24 and CD5 proteins and an IFN-hi naive B population were associated with TN-JDM and exhibited less CD39, an immunoregulatory protein. This data provides new insights into JDM immune dysregulation at cellular resolution and novel resource for myositis investigators.

2019 ◽  
Author(s):  
Hongyi Xin ◽  
Qi Yan ◽  
Yale Jiang ◽  
Qiuyu Lian ◽  
Jiadi Luo ◽  
...  

AbstractIdentifying and removing multiplets from downstream analysis is essential to improve the scalability and reliability of single cell RNA sequencing (scRNA-seq). High multiplet rates create artificial cell types in the dataset. Sample barcoding, including the cell hashing technology and the MULTI-seq technology, enables analytical identification of a fraction of multiplets in a scRNA-seq dataset.We propose a Gaussian-mixture-model-based multiplet identification method, GMM-Demux. GMM-Demux accurately identifies and removes the sample-barcoding-detectable multiplets and estimates the percentage of sample-barcoding-undetectable multiplets in the remaining dataset. GMM-Demux describes the droplet formation process with an augmented binomial probabilistic model, and uses the model to authenticate cell types discovered from a scRNA-seq dataset.We conducted two cell-hashing experiments, collected a public cell-hashing dataset, and generated a simulated cellhashing dataset. We compared the classification result of GMM-Demux against a state-of-the-art heuristic-based classifier. We show that GMM-Demux is more accurate, more stable, reduces the error rate by up to 69×, and is capable of reliably recognizing 9 multiplet-induced fake cell types and 8 real cell types in a PBMC scRNA-seq dataset.


Author(s):  
Mengjie Chen ◽  
Qi Zhan ◽  
Zepeng Mu ◽  
Lili Wang ◽  
Zhaohui Zheng ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) technology is poised to replace bulk cell RNA sequencing for most biological and medical applications as it allows users to measure gene expression levels in a cell-type-specific manner. However, data produced by scRNA-seq often exhibit batch effects that can be specific to a cell-type, to a sample, or to an experiment, which prevent integration or comparisons across multiple experiments. Here, we present Dmatch, a method that leverages an external expression atlas of human primary cells and kernel density matching to align multiple scRNA-seq experiments for downstream biological analysis. Dmatch facilitates alignment of scRNA-seq datasets with cell-types that may overlap only partially, and thus allows integration of multiple distinct scRNA-seq experiments to extract biological insights. In simulation, Dmatch compares favorably to other alignment methods, both in terms of reducing sample-specific clustering, and in terms of avoiding over-correction. When applied to scRNA-seq data collected from clinical samples in a healthy individual and five autoimmune disease patients, Dmatch enabled cell-type-specific differential gene expression comparisons across biopsy sites and disease conditions, and uncovered a shared population of pro-inflammatory monocytes across biopsy sites in RA patients. We further show that Dmatch increases the number of eQTLs mapped from population scRNA-seq data. Dmatch is fast, scalable, and improves the utility of scRNA-seq for several important applications. Dmatch is freely available online (https://qzhan321.github.io/dmatch/).


2021 ◽  
Author(s):  
Yifan Zhao ◽  
Huiyu Cai ◽  
Zuobai Zhang ◽  
Jian Tang ◽  
Yue Li

Abstract The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, integrative analysis of scRNA-seq data remains a challenge largely due to batch effects. We present single-cell Embedded Topic Model (scETM), an unsupervised deep generative model that recapitulates known cell types by inferring the latent cell topic mixtures via a variational autoencoder. scETM is scalable to over 10^6 cells and enables effective knowledge transfer across datasets. scETM also offers high interpretability and allows the incorporation of prior pathway knowledge into the gene embeddings. The scETM-inferred topics show enrichment in cell-type-specific and disease-related pathways.


2020 ◽  
Author(s):  
Zhuoxin Chen ◽  
Chang Ye ◽  
Zhan Liu ◽  
Shanjun Deng ◽  
Xionglei He ◽  
...  

AbstractIt has been challenging to characterize the lineage relationships among cells in vertebrates, which comprise a great number of cells. Fortunately, recent progress has been made by combining the CRISPR barcoding system with single-cell sequencing technologies to provide an unprecedented opportunity to track lineage at single-cell resolution. However, due to errors and/or dropouts introduced by amplification and sequencing, reconstruction of accurate lineage relationships in complex organisms remains a challenge. Thus, improvements in both experimental design and computational analysis are necessary for lineage inference. In this study, we employed single-cell Lineage tracing On Endogenous Scarring Sites (scLOESS), a lineage recording strategy based on the CRISPR-Cas9 system, to trace cell fate commitments for zebrafish larvae. With rigorous quality control, we demonstrated that lineage commitments of complex organisms could be inferred from a limited number of barcoding sites. Together with cell-type characterization, our method could homogenously recover lineage information. In combination with the cell-type and lineage information, we depicted the development histories for germ layers as well as cell types. Furthermore, when combined with trajectory analysis, our methods could capture and resolve the ongoing lineage commitment events to gain further biological insights into later development and differentiation in complex organisms.


2021 ◽  
Author(s):  
Yifan Zhao ◽  
Huiyu Cai ◽  
Zuobai Zhang ◽  
Jian Tang ◽  
Yue Li

AbstractThe advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, integrative analysis of scRNA-seq data remains a challenge largely due to batch effects. We present single-cell Embedded Topic Model (scETM), an unsupervised deep generative model that recapitulates known cell types by inferring the latent cell topic mixtures via a variational autoencoder. scETM is scalable to over 106 cells and enables effective knowledge transfer across datasets. scETM also offers high inter-pretability and allows the incorporation of prior pathway knowledge into the gene embeddings. The scETM-inferred topics show enrichment in cell-type-specific and disease-related pathways.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexander J Tarashansky ◽  
Jacob M Musser ◽  
Margarita Khariton ◽  
Pengyang Li ◽  
Detlev Arendt ◽  
...  

Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between distant relatives is hindered by complex gene histories and diversifications in expression programs. Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas manifolds across species. This new method, SAMap, identifies homologous cell types with shared expression programs across distant species within phyla, even in complex examples where homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more similar expression to their paralogs than their orthologs, suggesting paralog substitution may be more common in evolution than previously appreciated. Lastly, comparing species across animal phyla, spanning mouse to sponge, reveals ancient contractile and stem cell families, which may have arisen early in animal evolution.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Elmer A. Fernández ◽  
Yamil D. Mahmoud ◽  
Florencia Veigas ◽  
Darío Rocha ◽  
Mónica Balzarini ◽  
...  

AbstractRNA sequencing has proved to be an efficient high-throughput technique to robustly characterize the presence and quantity of RNA in tumor biopsies at a given time. Importantly, it can be used to computationally estimate the composition of the tumor immune infiltrate and to infer the immunological phenotypes of those cells. Given the significant impact of anti-cancer immunotherapies and the role of the associated immune tumor microenvironment (ITME) on its prognosis and therapy response, the estimation of the immune cell-type content in the tumor is crucial for designing effective strategies to understand and treat cancer. Current digital estimation of the ITME cell mixture content can be performed using different analytical tools. However, current methods tend to over-estimate the number of cell-types present in the sample, thus under-estimating true proportions, biasing the results. We developed MIXTURE, a noise-constrained recursive feature selection for support vector regression that overcomes such limitations. MIXTURE deconvolutes cell-type proportions of bulk tumor samples for both RNA microarray or RNA-Seq platforms from a leukocyte validated gene signature. We evaluated MIXTURE over simulated and benchmark data sets. It overcomes competitive methods in terms of accuracy on the true number of present cell-types and proportions estimates with increased robustness to estimation bias. It also shows superior robustness to collinearity problems. Finally, we investigated the human immune microenvironment of breast cancer, head and neck squamous cell carcinoma, and melanoma biopsies before and after anti-PD-1 immunotherapy treatment revealing associations to response to therapy which have not seen by previous methods.


Sign in / Sign up

Export Citation Format

Share Document