scholarly journals Multiple stressors and recruitment failure of long-lived endangered freshwater mussels with a complex life cycle

2021 ◽  
Author(s):  
Kazuki Miura ◽  
Nobuo Ishiyama ◽  
Junjiro N Negishi ◽  
Daisetsu Ito ◽  
Keita Kawajiri ◽  
...  

Multiple stressors can interactively affect the population of organisms; however, the process by which they affect recruitment efficiency remains unclear for empirical populations. Recruitment efficiency can be regulated at multiple stages of life, particularly in organisms with complex life cycles. Understanding the interactive effects of multiple stressors on recruitment efficiency and determining the bottleneck life stages is imperative for species conservation. The proportion of <20-year-old juveniles of the endangered freshwater pearl mussel Margaritifera togakushiensis, which has an obligate parasitic larval stage, was investigated in 24 rivers from eastern Hokkaido, northern Japan to reveal the influence of nutrients, fine sediment, and their combined effects on juvenile recruitment efficiency. The following indices for recruitment at adult, parasitic, and post-parasitic juvenile stages were obtained from 11 of these rivers: gravid female density, glochidia density (the number of glochidia infections per stream area), and juvenile survival rate. This study explored the bottleneck stages of recruitment efficiency and the interactive effects of the two stressors on these stages. Twenty-four population status assessments determined that the proportion of juveniles ranged from 0.00 to 0.53, and juveniles were absent from four rivers. The results showed that the parasitic and post-parasitic juvenile stages were bottlenecks for recruitment efficiency. Juvenile survival rates had a more significant positive effect on recruitment efficiency in rivers with a high glochidia density. Juvenile survival rate was decreased by the synergistic interaction of nutrients and fine sediment, although factors limiting glochidia density were not found. The nutrient concentration of rivers in the study region was well explained by the proportion of agricultural land cover and urban areas in the watersheds, but no relationship was detected between fine sediment abundance and land use. This study suggests that nutrient management at a catchment scale can be effective for re-establishing the recruitment of M. togakushiensis, particularly in rivers with a high content of fine sediments. The results also emphasise the importance of considering both parasitic and post-parasitic juvenile stages of mussels to maximise the positive effects of stressor mitigation.

Author(s):  
Annie Jonsson

AbstractMost animal species have a complex life cycle (CLC) with metamorphosis. It is thus of interest to examine possible benefits of such life histories. The prevailing view is that CLC represents an adaptation for genetic decoupling of juvenile and adult traits, thereby allowing life stages to respond independently to different selective forces. Here I propose an additional potential advantage of CLCs that is, decreased variance in population growth rate due to habitat separation of life stages. Habitat separation of pre- and post-metamorphic stages means that the stages will experience different regimes of environmental variability. This is in contrast to species with simple life cycles (SLC) whose life stages often occupy one and the same habitat. The correlation in the fluctuations of the vital rates of life stages is therefore likely to be weaker in complex than in simple life cycles. By a theoretical framework using an analytical approach, I have (1) derived the relative advantage, in terms of long-run growth rate, of CLC over SLC phenotypes for a broad spectrum of life histories, and (2) explored which life histories that benefit most by a CLC, that is avoid correlation in vital rates between life stages. The direction and magnitude of gain depended on life history type and fluctuating vital rate. One implication of our study is that species with CLCs should, on average, be more robust to increased environmental variability caused by global warming than species with SLCs.


Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12404
Author(s):  
Frédéric Barraquand ◽  
Ólafur K. Nielsen

Knowledge of survival rates and their potential covariation with environmental drivers, for both adults and juveniles, is paramount to forecast the population dynamics of long-lived animals. Long-lived bird and mammal populations are indeed very sensitive to change in survival rates, especially that of adults. Here we report the first survival estimates for the Icelandic gyrfalcon (Falco rusticolus) obtained by capture-mark-recapture methods. We use a mark-recapture-recovery model combining live and dead encounters into a unified analysis, in a Bayesian framework. Annual survival was estimated at 0.83 for adults and 0.40 for juveniles. Positive effects of main prey density on juvenile survival (5% increase in survival from min to max density) were possible though not likely. Weather effects on juvenile survival were even less likely. The variability in observed lifespan suggests that adult birds could suffer from human-induced alteration of survival rates.


2010 ◽  
Vol 11 (3) ◽  
pp. 6-26 ◽  
Author(s):  
Bernardo M. Ferdman ◽  
Avi Avigdor ◽  
Deborah Braun ◽  
Jennifer Konkin ◽  
Daniel Kuzmycz

This conceptual paper addresses the presumed interactive effects of work group inclusion and diversity on work group performance. Building on prior theory and research focusing on individual-level inclusion, we put forth the construct of collective experience of inclusion, the aggregated degree to which members of a group feel valued by, engaged with, and able to express themselves authentically within their work group, both as individuals and as members of multiple identity groups. We propose that collective experience of inclusion will be positively associated with indicators of the group's performance. This relationship, we further propose, will be moderated by the diversity of the group's membership, such that, as diversity increases, the positive effects of the collective experience of inclusion on performance will be enhanced. Finally, we propose that variation in the degree to which individuals experience inclusion in the group, as assessed with an index of dispersion in the experience of inclusion, will further moderate this effect, and attenuate the positive interactive effects of collective experience of inclusion and diversity on performance.


1989 ◽  
Vol 46 (8) ◽  
pp. 1428-1436 ◽  
Author(s):  
Andrew W. Trites

Three methods for estimating the survival rate of juvenile northern fur seals (Callorhinus ursinus) are developed from the earlier works of Chapman, Smith and Polacheck and Lander. Each of the methods I propose divides the estimated number of males alive at 2 yr of age by the estimated number of pups born in their year class. The number of surviving juveniles are reconstructed by back calculation using the number of males killed during the commercial harvest and the subsequent counts of bulls. The three methods differ in their assumptions concerning subadult survival and escapement from the harvest, although all produce similar estimates when applied to the St. Paul Island fur seals. These new estimates of juvenile survival (1950–80) are strongly correlated with the ratio of cohort kill to pup production and with estimates from the currently-used Lander procedure. This is because the harvest morality of males is large compared with natural morality. The new methods perform acceptably over a wider class of data than Lander's. Their greatest advantage over current procedures is that they provide a better insight into the reliability of the survival estimates they produce.


2019 ◽  
Vol 112 (5) ◽  
pp. 2316-2323 ◽  
Author(s):  
Aigi Margus ◽  
Miia Rainio ◽  
Leena Lindström

AbstractOrganisms live in complex multivariate environments. In agroecosystems, this complexity is often human-induced as pest individuals can be exposed to many xenobiotics simultaneously. Predicting the effects of multiple stressors can be problematic, as two or more stressors can have interactive effects. Our objective was to investigate whether indirect glyphosate-based herbicide (GBH) exposure of the host plant has interactive effects in combination with an insecticide (azinphos-methyl) on an invasive pest Colorado potato beetle (Leptinotarsa decemlineata Say). We tested the effects of GBH and insecticide on the survival, insecticide target genes expression (acetylcholinesterase genes) and oxidative status biomarkers (glutathione S-transferase [GST], glucose-6-phosphate dehydrogenase [G6PDH], glutathione reductase homolog [GR], glutathione peroxidase homolog [GPx], total glutathione [totGSH], glutathione reduced-oxidized [GSH: GSSG], catalase [CAT], superoxide dismutase [SOD], lipid hydroperoxides). We found that exposure to indirect GBH has no single or interactive effects in combination with the insecticide on larval survival. However, prior exposure to GBH inhibits Ldace1 gene expression by 0.55-fold, which is the target site for the organophosphate and carbamate insecticides. This difference disappears when individuals are exposed to both GBH and insecticide, suggesting an antagonistic effect. On the other hand, oxidative status biomarker scores (PCAs of GPx, GR, and CAT) were decreased when exposed to both stressors, indicating a synergistic effect. Overall, we found that indirect GBH exposure can have both antagonistic and synergistic effects in combination with an insecticide, which should be considered when aiming for an ecologically relevant risk assessment of multiple human-induced stressors.


2019 ◽  
Vol 286 (1899) ◽  
pp. 20182866 ◽  
Author(s):  
Ricardo J. Miranda ◽  
Melinda A. Coleman ◽  
Alejandro Tagliafico ◽  
Maria S. Rangel ◽  
Lea T. Mamo ◽  
...  

The interactive effects of ocean warming and invasive species are complex and remain a source of uncertainty for projecting future ecological change. Climate-mediated change to trophic interactions can have pervasive ecological consequences, but the role of invasion in mediating trophic effects is largely unstudied. Using manipulative experiments in replicated outdoor mesocosms, we reveal how near-future ocean warming and macrophyte invasion scenarios interactively impact gastropod grazing intensity and preference for consumption of foundation macroalgae ( Ecklonia radiata and Sargassum vestitum ). Elevated water temperature increased the consumption of both macroalgae through greater grazing intensity. Given the documented decline of kelp ( E. radiata ) growth at higher water temperatures, enhanced grazing could contribute to the shift from kelp-dominated to Sargassum -dominated reefs that is occurring at the low-latitude margins of kelp distribution. However, the presence of a native invader ( Caulerpa filiformis ) was related to low consumption by the herbivores on dominant kelp at warmer temperatures. Thus, antagonistic effects between climate change and a range expanding species can favour kelp persistence in a warmer future. Introduction of species should, therefore, not automatically be considered unfavourable under climate change scenarios. Climatic changes are increasing the need for effective management actions to address the interactive effects of multiple stressors and their ecological consequences, rather than single threats in isolation.


2017 ◽  
Vol 62 (7) ◽  
pp. 1288-1302 ◽  
Author(s):  
Noreen E. Kelly ◽  
Joelle D. Young ◽  
Jennifer G. Winter ◽  
Michelle E. Palmer ◽  
Eleanor A. Stainsby ◽  
...  

2015 ◽  
Vol 73 (3) ◽  
pp. 693-703 ◽  
Author(s):  
S. L. Kram ◽  
N. N. Price ◽  
E. M. Donham ◽  
M. D. Johnson ◽  
E. L. A. Kelly ◽  
...  

Abstract Anthropogenic carbon dioxide (CO2) emissions simultaneously increase ocean temperatures and reduce ocean surface pH, a process termed ocean acidification (OA). OA is expected to negatively affect the growth and physiology of many calcified organisms, but the response of non-calcified (fleshy) organisms is less well understood. Rising temperatures and pCO2 can enhance photosynthetic rates (within tolerance limits). Therefore, warming may interact with OA to alter biological responses of macroalgae in complicated ways. Beyond thresholds of physiological tolerance, however, rising temperatures could further exacerbate negative responses to OA. Many studies have investigated the effects of OA or warming independently of each other, but few studies have quantified the interactive effects of OA and warming on marine organisms. We conducted four short-term independent factorial CO2 enrichment and warming experiments on six common species of calcified and fleshy macroalgae from southern California to investigate the independent and interactive effects of CO2 and warming on growth, carbonic anhydrase (CA) enzyme activity, pigment concentrations, and photosynthetic efficiency. There was no effect of elevated pCO2 on CA activity, pigment concentration, and photosynthetic efficiency in the macroalgal species studies. However, we found that calcareous algae suffered reduced growth rates under high pCO2 conditions alone, although the magnitude of the effect varied by species. Fleshy algae had mixed responses of growth rates to high pCO2, indicating that the effects of pCO2 enrichment are inconsistent across species. The combined effects of elevated pCO2 and warming had a significantly negative impact on growth for both fleshy and calcareous algae; calcareous algae experienced five times more weight loss than specimens in ambient control conditions and fleshy growth was reduced by 76%. Our results demonstrate the need to study the interactive effects of multiple stressors associated with global change on marine communities.


Sign in / Sign up

Export Citation Format

Share Document