scholarly journals Integrated phylogenomics and fossil data illuminate the evolution of beetles

2021 ◽  
Author(s):  
Chenyang Cai ◽  
Erik Tihelka ◽  
Mattia Giacomelli ◽  
John F. Lawrence ◽  
Adam Ślipiński ◽  
...  

AbstractWith over 380,000 described species and possibly several million more yet unnamed, beetles represent the most biodiverse animal order. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here we use a dataset of 68 single-copy nuclear protein coding genes sampling 129 out of the 194 recognized extant families as well as the first comprehensive set of fully-justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov., and Staphyliniformia sensu nov., alongside changes below the superfamily level. The heterogeneous former superfamily Cucujoidea is divided into three monophyletic groups: Erotyloidea stat. nov., Nitiduloidea stat. nov., and Cucujoidea sensu nov. Our divergence time analysis recovered an evolutionary timescale congruent with the fossil record: a late Carboniferous origin of Coleoptera, a late Paleozoic origin of all modern beetle suborders, and a Triassic–Jurassic origin of most extant families. While fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution, many polyphagan superfamilies exhibited increases in richness with Cretaceous flowering plants.

2020 ◽  
Author(s):  
Chao Yang ◽  
Xuejuan Li ◽  
Qingxiong Wang ◽  
Hao Yuan ◽  
Yuan Huang ◽  
...  

Abstract BackgroundThe relict gull (Larus relictus), one of the least known Aves, was classified as vulnerable on the IUCN Red List and is a first-class national protected bird in China. Genomic resources for L. relictus are lacking, which limits the study of its evolution and its conservation.ResultsIn this study, based on the Illumina and PacBio sequencing platforms, we successfully assembled the genome of L. relictus, the first reference genome of the genus Larus. The size of the final assembled genome was 1.21 Gb, with a contig N50 of 8.11 Mb. A total of 18,454 protein-coding genes were predicted from the assembly results, with 16,967 (91.94%) of these genes annotated. The genome contained 92.52 Mb of repeat sequence, accounting for 7.63% of the assembly. The phylogenetic tree was constructed using 7,339 single-copy orthologous genes, which showed Charadriiformes located at the basal position and Philomachus pugnax as the closest relative of L. relictus. The divergence time between L. relictus and P. pugnax was ~68.44 Mya. The population dynamics of the Ordos breeding subpopulation in Hongjian Nur is a good confirmation that these birds are suffering from habitat loss and fragmentation.ConclusionsThis assembled genome will be a valuable genomic resource for a range of genomic and conservation studies of L. relictus and helps to establish a foundation for further studies investigating whether the other three breeding subpopulations have combined with the Ordos breeding subpopulation. As the species is threatened by habitat loss and fragmentation, actions to protect L. relictus are suggested to improve the fragmentation of breeding populations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Zhang ◽  
Shu Wang ◽  
Chun Su ◽  
AJ Harris ◽  
Liang Zhao ◽  
...  

The genus Zygophyllum comprises over 150 species within the plant family Zygophyllaceae. These species predominantly grow in arid and semiarid areas, and about 20 occur in northwestern China. In this study, we sampled 24 individuals of Zygophyllum representing 15 species and sequenced their complete chloroplast (cp) genomes. For comparison, we also sequenced cp genomes of two species of Peganum from China representing the closely allied family, Nitrariaceae. The 24 cp genomes of Zygophyllum were smaller and ranged in size from 104,221 to 106,286 bp, each containing a large single-copy (LSC) region (79,245–80,439 bp), a small single-copy (SSC) region (16,285–17,146 bp), and a pair of inverted repeat (IR) regions (3,792–4,466 bp). These cp genomes contained 111–112 genes each, including 74–75 protein-coding genes (PCGs), four ribosomal RNA genes, and 33 transfer RNA genes, and all cp genomes showed similar gene order, content, and structure. The cp genomes of Zygophyllum appeared to lose some genes such as ndh genes and rRNA genes, of which four rRNA genes were in the SSC region, not in the IR regions. However, the SC and IR regions had greater similarity within Zygophyllum than between the genus and Peganum. We detected nine highly variable intergenic spacers: matK-trnQ, psaC-rps15, psbZ-trnG, rps7-trnL, rps15-trnN, trnE-trnT, trnL-rpl32, trnQ-psbK, and trnS-trnG. Additionally, we identified 156 simple sequence repeat (cpSSR) markers shared among the genomes of the 24 Zygophyllum samples and seven cpSSRs that were unique to the species of Zygophyllum. These markers may be useful in future studies on genetic diversity and relationships of Zygophyllum and closely related taxa. Using the sequenced cp genomes, we reconstructed a phylogeny that strongly supported the division of Chinese Zygophyllum into herbaceous and shrubby clades. We utilized our phylogenetic results along with prior morphological studies to address several remaining taxonomic questions within Zygophyllum. Specifically, we found that Zygophyllum kaschgaricum is included within Zygophyllum xanthoxylon supporting the present treatment of the former genus Sarcozygium as a subgenus within Zygophyllum. Our results provide a foundation for future research on the genetic resources of Zygophyllum.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1873
Author(s):  
Yang Yang ◽  
Lina Wu ◽  
Zhuoying Weng ◽  
Xi Wu ◽  
Xi Wang ◽  
...  

The humpback grouper (Cromileptes altivelis), an Epinephelidae species, is patchily distributed in the reef habitats of Western Pacific water. This grouper possesses a remarkably different body shape and notably low growth rate compared with closely related grouper species. For promoting further research of the grouper, in the present study, a high-quality chromosome-level genome of humpback grouper was assembled using PacBio sequencing and high-throughput chromatin conformation capture (Hi-C) technology. The assembled genome was 1.013 Gb in size with 283 contigs, of which, a total of 143 contigs with 1.011 Gb in size were correctly anchored into 24 chromosomes. Moreover, a total of 26,037 protein-coding genes were predicted, of them, 25,243 (96.95%) genes could be functionally annotated. The high-quality chromosome-level genome assembly will provide pivotal genomic information for future research of the speciation, evolution and molecular-assisted breeding in humpback groupers. In addition, phylogenetic analysis based on shared single-copy orthologues of the grouper species showed that the humpback grouper is included in the Epinephelus genus and clustered with the giant grouper in one clade with a divergence time of 9.86 Myr. In addition, based on the results of collinearity analysis, a gap in chromosome 6 of the humpback grouper was detected; the missed genes were mainly associated with immunity, substance metabolism and the MAPK signal pathway. The loss of the parts of genes involved in these biological processes might affect the disease resistance, stress tolerance and growth traits in humpback groupers. The present research will provide new insight into the evolution and origin of the humpback grouper.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


2021 ◽  
Vol 22 (4) ◽  
pp. 2183
Author(s):  
Nurhani Mat Razali ◽  
Siti Norvahida Hisham ◽  
Ilakiya Sharanee Kumar ◽  
Rohit Nandan Shukla ◽  
Melvin Lee ◽  
...  

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani’s pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joonhyung Jung ◽  
Changkyun Kim ◽  
Joo-Hwan Kim

Abstract Background Commelinaceae (Commelinales) comprise 41 genera and are widely distributed in both the Old and New Worlds, except in Europe. The relationships among genera in this family have been suggested in several morphological and molecular studies. However, it is difficult to explain their relationships due to high morphological variations and low support values. Currently, many researchers have been using complete chloroplast genome data for inferring the evolution of land plants. In this study, we completed 15 new plastid genome sequences of subfamily Commelinoideae using the Mi-seq platform. We utilized genome data to reveal the structural variations and reconstruct the problematic positions of genera for the first time. Results All examined species of Commelinoideae have three pseudogenes (accD, rpoA, and ycf15), and the former two might be a synapomorphy within Commelinales. Only four species in tribe Commelineae presented IR expansion, which affected duplication of the rpl22 gene. We identified inversions that range from approximately 3 to 15 kb in four taxa (Amischotolype, Belosynapsis, Murdannia, and Streptolirion). The phylogenetic analysis using 77 chloroplast protein-coding genes with maximum parsimony, maximum likelihood, and Bayesian inference suggests that Palisota is most closely related to tribe Commelineae, supported by high support values. This result differs significantly from the current classification of Commelinaceae. Also, we resolved the unclear position of Streptoliriinae and the monophyly of Dichorisandrinae. Among the ten CDS (ndhH, rpoC2, ndhA, rps3, ndhG, ndhD, ccsA, ndhF, matK, and ycf1), which have high nucleotide diversity values (Pi > 0.045) and over 500 bp length, four CDS (ndhH, rpoC2, matK, and ycf1) show that they are congruent with the topology derived from 77 chloroplast protein-coding genes. Conclusions In this study, we provide detailed information on the 15 complete plastid genomes of Commelinoideae taxa. We identified characteristic pseudogenes and nucleotide diversity, which can be used to infer the family evolutionary history. Also, further research is needed to revise the position of Palisota in the current classification of Commelinaceae.


2018 ◽  
Vol 170 ◽  
pp. 05009
Author(s):  
Artur Petrov ◽  
Daria Petrova

The article considers the results of research of accident rate heterogeneity in cities-administrative centers of subjects of Russian Federation (2015, 2016). Using methods of ranging, regression analysis and spatial differentiation these cities were classified into 5 classes on the basis of relative disadvantage in road traffic safety sphere. For each group of cities differentiated recommendations on financing regional road traffic safety programs were suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fenghua Tian ◽  
Changtian Li ◽  
Yu Li

Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T. Harada] is an important edible and medicinal mushroom endemic to Northeastern China. Here we report the de novo sequencing and assembly of the S. edulis genome using single-molecule real-time sequencing technology. The whole genome was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised 9,364 annotated protein-coding genes, many of which encoded enzymes involved in the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates or enzymes predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses of Basidiomycota fungi based on a single-copy orthologous protein indicated that the Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family. The annotated whole-genome sequence of S. edulis can serve as a reference for investigations of bioactive compounds with medicinal value and the development and commercial production of superior S. edulis varieties.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gefei Xiao ◽  
Xianrong Qiu ◽  
Yuqiu Zhou ◽  
Gongjun Tan ◽  
Yao Shen

Abstract Objective We present a genetic analysis of an asymptomatic family with a 4q terminal deletion; we also review other similar published studies and discuss the genotype–phenotype correlation. Methods A karyotype analysis was performed on the amniotic fluid cells of a woman at 24 weeks of pregnancy and peripheral blood lymphocytes from both parents and their older son with the conventional G-banding technique. Chromosomal microarray analysis (CMA) testing was carried out for both parents and the fetus to analyze copy number variation (CNV) in the whole genome. Results The results showed no abnormalities in the karyotypes of the father and older son, and the karyotypes of the mother and fetus were 46,XX,del(4)(q35.1) and 46,XY,del(4)(q35.1), respectively. CMA results showed a partial deletion at the 4q terminus in both the fetus and mother. The deletion region of the fetus was arr[GRCh37] 4q35.1q35.2(186,431,008_190,957,460) × 1; the loss size of the CNV was approximately 4.5 Mb and involved 14 protein-coding genes, namely, CYP4V2, F11, FAM149A, FAT1, FRG1, FRG2, KLKB1, MTNR1A, PDLIM3, SORBS2, TLR3, TRIML1, TRIML2, and ZFP42. No variation on chromosome 4 was detected in the father’s CMA results. Conclusion Deletion of the 4q subtelomeric region is a familial variation. The arr[GRCh37] 4q35.1q35.2(186,431,008_190,957,460) region single-copy deletion did not cause obvious congenital defects or mental retardation. The application of high-resolution genetic testing technology combined with the analysis of public genetic database information can more clearly elucidate the genotype–phenotype correlation of the disease and provide support for both prenatal and postnatal genetic counseling.


2021 ◽  
Author(s):  
Jingting Liu ◽  
Mei Jiang ◽  
Haimei Chen ◽  
Yu Liu ◽  
Chang Liu ◽  
...  

AbstractStemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal medicines in Asia. In Chinese Pharmacopoeia, Baibu has multiple authentic sources, and there are many homonym herbs sold as Baibu in the herbal medicine market. The existence of the counterfeits of Baibu brings challenges to its identification. To assist the accurate identification of Baibu, we sequenced and analyzed the complete chloroplast genome of Stemona sessilifolia using next-generation sequencing technology. The genome was 154,039 bp in length, possessing a typical quadripartite structure consisting of a pair of inverted repeats (IRs: 27,094 bp) separating by a large single copy (LSC: 81,950 bp) and a small single copy (SSC: 17,901 bp). A total of 112 unique genes were identified, including 80 protein-coding, 28 transfer RNA, and four ribosomal RNA genes. Besides, 45 tandem, 27 forward, 23 palindromic, and 72 simple sequence repeats were detected in the genome by repeat analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica palmate), we found that IR expansion and SSC contraction events of Stemona sessilifolia resulted in two copies of the rpl22 gene in the IR regions and partial duplication of the ndhF gene in the SSC region. Secondly, an approximately 3-kb-long inversion was identified in the LSC region, leading to the petA and cemA gene presented in the complementary strand of the chloroplast DNA molecule. Comparative analysis revealed some highly variable regions, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32. Finally, gene loss events were investigated in the context of phylogenetic relationships. In summary, the complete plastome of Stemona sessilifolia will provide valuable information for the molecular identification of Baibu and assist in elucidating the evolution of Stemona sessilifolia.


Sign in / Sign up

Export Citation Format

Share Document