scholarly journals PcGCE is a potent elicitor of defense responses in aspen

2021 ◽  
Author(s):  
Evgeniy N. Donev ◽  
Marta Derba-Maceluch ◽  
Xiaokun Liu ◽  
Henri Colyn Bwanika ◽  
Izabela Dobrowolska ◽  
...  

Using microbial enzymes in transgenesis is a powerful means to introduce new functionalities in plants. Glucuronoyl esterase (GCE) is a microbial enzyme hydrolyzing the ester bond between lignin and 4-O-methyl-α-D-glucuronic acid present as a side chain of glucuronoxylan. This bond mediates lignin-carbohydrate complex (LCC) formation, considered as crucial factor of lignocellulose recalcitrance to saccharification. Previous studies showed that hybrid aspen (Populus tremula L. x tremuloides Michx.) constitutively expressing Phanerochaete carnosa Burt GCE (PcGCE) had better efficiency of cellulose-to-glucose conversion but were stunned and had lower cellulose content indicating that more studies are needed to design strategy for deployment of this enzyme in planta. Here we report that the transgenic plants exhibit premature leaf senescence, increased accumulation of calcium oxalate crystals, tyloses and necrotic lesions and have strongly activated immune defense reactions as revealed by their altered profiles of transcriptomes, metabolomes and hormones in the leaves. To elucidate if these effects are triggered by damage-associated molecular patterns (DAMPs) or by PcGCE protein perceived as a pathogen-associated molecular pattern (PAMP), we ectopically expressed in aspen an enzymatically inactive PcGCES217A. The mutated PcGCE induced similar growth retardation, leaf necrosis and premature senescence as the active one, providing evidence that PcGCE protein is recognized as PAMP. Transcriptomics analysis of young expanding leaves of 35S:PcGCE plants identified several candidates for receptors of PcGCE, which were not expressed in developing wood tissues. Grafting experiments showed that PcGCE transcripts are not cell-to-cell mobile and that leaves augment systemic responses. In agreement, expressing PcGCE in developing wood by using the wood-specific promoter (WP), avoided all off-target effects. Moreover, WP:PcGCE lines grew better than control plants providing evidence that this strategy can be used in transgenic crops dedicated for biorefinery.

Author(s):  
О.Ю. Филатов ◽  
В.А. Назаров

Данная статья обобщает накопившуюся на сегодняшний день информацию о многообразии образраспознающих рецепторов, их роли в регуляции иммунной системы. Распознавание патогена врожденным иммунитетом происходит с помощью рецепторов к широкому спектру антигенов за счет выделения нескольких высоко консервативных структур микроорганизмов. Эти структуры были названы патоген-ассоциированные образы (Patogen-Associated Molecular Patterns - PAMP). Наиболее изученными являются липополисахарид грамм отрицательных бактерий (LPS), липотейхоевые кислоты, пептидогликан (PGN), CpG мотивы ДНК и РНК. Рецепторы, распознающие PAMP, называются PRR. Данная группа рецепторов также распознает молекулы, образующиеся при повреждении собственных тканей. Такие молекулярные структуры называются Damage-Associated Molecular Patterns (DAMP), или образы, ассоциированные с повреждением. В качестве DAMP могут выступать белки теплового шока, хроматин, фрагменты ДНК. В зависимости от локализации, образраспознающие рецепторы принято разделять на: расположенные на мембране Toll-подобные рецепторы (Toll-like receptors, TLR) и рецепторы лектина С-типа (C-type lectin receptors, CLR), а также расположенные в цитоплазме NOD-подобные рецепторы (NOD-like receptors, NLR) и цитоплазматические РНК- и ДНК-сенсоры. Сегодня у человека известно 10 типов TLR, часть из которых расположена на поверхности (TLR1-TLR6, TLR10) большинства клеток, в том числе макрофагов, В-лимфоцитов и дендритных клеток, а часть - в эндосомах (TLR3, TLR7-TLR9). CLR представляет из себя семейство рецепторов, расположенных на мембране и имеющих домены распознавания углеводов (CRD), или структурно сходные лектиноподобные домены типа C (CTLD). В данном семействе рецепторов принято по происхождению и структуре выделять 17 групп. CLR активно участвуют в противогрибковой иммунной защите, а также они играют роль в защите и от других типов микроорганизмов. NOD (нуклеотидсвязывающий и олигомеризационный домен)-подобные рецепторы расположены в цитоплазме. Благодаря этим рецепторам, патоген, который избежал распознавания на поверхности мембраны, сталкивается со вторым уровнем распознавания уже внутри клетки. В данной статье рассматриваются пути активации образраспознающих рецепторов, их эффекты и применение данных эффектов в медицине. This article summarizes currently available information about the variety of image-recognizing receptors and their role in regulation of the immune system. Pathogen recognition by the innate immunity is mediated by receptors to a wide range of antigens via recognition of several highly conservative structures of microorganisms. These structures were named pathogen-associated images or PAMP (pathogen-associated molecular pattern). The best studied types of such structures include lipopolysaccharide (LPS) of gram-negative bacteria, lipoteichoic acids, peptidoglycan (PGN), and CpG DNA and RNA motifs. PAMP-recognizing receptors (PRRS) are a group of receptors, which also recognize molecules released during damage of host tissues. Such molecular structures are called DAMPS (damage-associated molecular patterns) or damage-associated images. Heat shock proteins, chromatin, and DNA fragments may act as DAMPS. Depending on the localization, image-recognizing receptors are generally classified as membrane-located Toll-like receptors (TLR) and C-type lectin receptors (CLR), as well as cytoplasmic NOD-like receptors (NLR) and cytoplasmic RNA and DNA sensors. Today, 10 types of human TLR are known. Some of them are located on the surface (TLR1-TLR6, TLR10) of most cells, including macrophages, B-cells, and dendritic cells, and some are present in endosomes (TLR3, TLR7-TLR9). CLR is a family of membrane receptors that have carbohydrate recognition domains (CRD) or structurally similar lectin-like type C domains (CTLD). Seventeen groups are distinguished within this receptor family based on their origin and structure. CLRs are actively involved in antifungal immune defense and also play a role in protection against other types of microorganisms. NOD (nucleotide-binding and oligomerization domain)-like receptors are present in the cytoplasm. These receptors provide the second level of recognition inside the cell for the pathogens that have escaped recognition on the membrane surface. This article discusses activation pathways of image-recognizing receptors, their effects, and the use of such effects in medicine.


2015 ◽  
Vol 112 (17) ◽  
pp. 5533-5538 ◽  
Author(s):  
Manuel Benedetti ◽  
Daniela Pontiggia ◽  
Sara Raggi ◽  
Zhenyu Cheng ◽  
Flavio Scaloni ◽  
...  

Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.


2019 ◽  
Vol 20 (18) ◽  
pp. 4343 ◽  
Author(s):  
Irina Lyapina ◽  
Anna Filippova ◽  
Igor Fesenko

Plants have evolved a sophisticated innate immune system to cope with a diverse range of phytopathogens and insect herbivores. Plasma-membrane-localized pattern recognition receptors (PRRs), such as receptor-like kinases (RLK), recognize special signals, pathogen- or damage-associated molecular patterns (PAMPs or DAMPs), and trigger immune responses. A growing body of evidence shows that many peptides hidden in both plant and pathogen functional protein sequences belong to the group of such immune signals. However, the origin, evolution, and release mechanisms of peptide sequences from functional and nonfunctional protein precursors, known as cryptic peptides, are largely unknown. Various special proteases, such as metacaspase or subtilisin-like proteases, are involved in the release of such peptides upon activation during defense responses. In this review, we discuss the roles of cryptic peptide sequences hidden in the structure of functional proteins in plant defense and plant-pathogen interactions.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Matevž Rumpret ◽  
Helen J. von Richthofen ◽  
Victor Peperzak ◽  
Linde Meyaard

Pathogen- and damage-associated molecular patterns are sensed by the immune system’s pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals.


2021 ◽  
Vol 11 (11) ◽  
pp. 4724
Author(s):  
Yu Chen ◽  
Xiaoxiao Wang ◽  
Corrie H. C. Ng ◽  
Saiwah Tsao ◽  
Waikeung Leung

Background: Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are innate, damage-associated molecular patterns (DAMP) sensors. Their expressions in human periodontal resident cells and reactions toward irritations, such as hypoxia and lipopolysaccharide (LPS), remain not well characterized. This cross-sectional study aimed to investigate and characterize TLRs, NOD1/2 and NLRP1/2 expressions at the dento-gingival junction. Methods: Immunohistochemistry screening was carried out on periodontal tissue biopsies sections, while selected DAMP sensors signal and protein expression under Escherichia coli LPS (2 µg/mL) and/or hypoxia (1% O2), 24 h, by human gingival keratinocytes (HGK) or fibroblasts (HGF) were investigated. Results: Positive TLR1/2/4/5/6, NOD1/2 and NLRP1/2 immunostaining were observed in healthy and periodontitis biopsies with apparently more pocket epithelial cells positive for TLR2, TLR4 and NOD1/2. TLR1-6, NOD1/2 and NLRP1/2 messengers were detected in gingival/periodontal biopsies as well as healthy HGK and HGF explants. LPS and/or hypoxia induced signals and protein upregulation of NOD2 in HGKs or TLR1/6 and NOD2 in HGFs. Conclusion: Transcripts and proteins of TLR1/2/4/5/6, NOD1/2 and NLRP1/2 were expressed in human periodontal tissue in health and disease. Putting all observations together, NOD2, perhaps with TLR1/2/4/6, might be considered key, damage-associated molecular pattern sensors on periodontal resident cells.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2340
Author(s):  
Sun Min Lee ◽  
Paul Kim ◽  
Jinsuh You ◽  
Eui Ho Kim

Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.


Author(s):  
Divya Roy ◽  
Ravichandran Ramasamy ◽  
Ann Marie Schmidt

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Mehdi Safaeizadeh ◽  
Thomas Boller ◽  
Claude Becker

AbstractIn this research a high-throughput RNA sequencing based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedling in response to flg22, a well-known microbe-associated molecular pattern (MAMP), and AtPep1, a well-known peptide representing an endogenous damage-associated molecular patterns (DAMP). The results of our study revealed that 1895 (1634 up-regulated and 261 down-regulated) and 2271 (1706 up-regulated and 565 down-regulated) significant differentially expressed genes in response to flg22 and AtPep1 treatment, respectively. Among significant DEGs, we observed that a number of hitherto overlooked genes have been found to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed an increased susceptibility to infection by the virulent pathogen Pseudomomas syringae pv tomato mutant hrcC-, as evidenced by an increased growth of the pathogen in planta. Further we present evidence that the aclp1 mutant was deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant, was deficient in ROS production. The results from this research provide new information to a better understanding of the immune system in Arabidopsis.


2019 ◽  
Vol 1 (2) ◽  
pp. 25-26
Author(s):  
Nyshidha Gurijala

Inflammation is the human body’s defense mechanism to protect from foreign invaders- yet is also the causal agent of an array of diseases that immensely burden our society today. The innate immune response is a nonspecific mechanism through which inflammatory cells (e.g. neutrophils, macrophages, etc.), destroy pathogens such as bacteria, fungi, and viruses, and also respond to internal tissue injury. The death of local tissues through necrosis can lead to the introduction of molecular sequences normally found on the inside of the cell – to the extracellular environment. These sequences are termed damage associated molecular patterns (DAMPs), and can bind to toll like receptors (TLRs) on inflammatory cells to propagate a pro-inflammatory response through the release of cytokines and chemoattractants. It is established that intracellular molecules such as DNA, histones, and ATP act as DAMPs upon extracellular release.1 However, the potential of glucose as a DAMP is a research target that requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document