scholarly journals Defining the analytical and clinical sensitivity of the ARTIC method for the detection of SARS-CoV-2

Author(s):  
Nabil-Fareed Alikhan ◽  
Joshua Quick ◽  
Alexander J. Trotter ◽  
Samuel C. Robson ◽  
Matthew Bashton ◽  
...  

The SARS-CoV-2 ARTIC amplicon protocol is the most widely used genome sequencing method for SARS-CoV-2, accounting for over 43% of publicly-available genome sequences. The protocol utilises 98 primers to amplify ~400bp fragments of the SARS-CoV-2 genome covering all 30,000 bases. Understanding the analytical performance metrics of this protocol will improve how the data is used and interpreted. Different concentrations of SARS-CoV-2 control material were used to establish the limit of detection (LoD) of the ARTIC protocol. Results demonstrated the LoD was a minimum of 25-50 virus particles per mL. The sensitivity of ARTIC was comparable to the published sensitivities of commercial diagnostics assays and could therefore be used to confirm diagnostic testing results. A set of over 3,600 clinical samples from three UK regions were then evaluated to compare the protocols performance to clinical diagnostic assays (Roche Lightcycler 480 II, AusDiagnostics, Roche Cobas, Hologic Panther, Corman RdRp, Roche Flow, ABI QuantStudio 5, Seegene Nimbus, Qiagen Rotorgene, Abbott M2000, Thermo TaqPath, Xpert). We developed a Python tool, RonaLDO, to perform this validation (available under the GNU GPL3 open-source licence from https://github.com/quadram-institute-bioscience/ronaldo). Positives detected by diagnostic platforms were generally supported by sequencing data; platforms that used RT-qPCR were the best predictors of whether the sample would subsequently sequence successfully. To maximise success of sample sequencing for phylogenetic analysis, samples with Ct <31 should be chosen. For diagnostic tests that do not provide a quantifiable Ct value, adding a quantification step is recommended. The ARTIC SARS-CoV-2 sequencing protocol is highly sensitive, capable of detecting SARS-CoV-2 in samples with Cts in the high 30s. However, to routinely obtain whole genome coverage, samples with Ct <31 are recommended. Comparing different virus detection methods close to their LoD was challenging and significant discordance was observed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Wei ◽  
Esther Kohl ◽  
Alexandre Djandji ◽  
Stephanie Morgan ◽  
Susan Whittier ◽  
...  

AbstractThe COVID-19 pandemic has resulted in an urgent need for a rapid, point of care diagnostic testing that could be rapidly scaled on a worldwide level. We developed and tested a highly sensitive and robust assay based on reverse transcription loop mediated isothermal amplification (RT-LAMP) that uses readily available reagents and a simple heat block using contrived spike-in and actual clinical samples. RT-LAMP testing on RNA-spiked samples showed a limit of detection (LoD) of 2.5 copies/μl of viral transport media. RT-LAMP testing directly on clinical nasopharyngeal swab samples in viral transport media had an 85% positive percentage agreement (PPA) (17/20), and 100% negative percentage agreement (NPV) and delivered results in 30 min. Our optimized RT-LAMP based testing method is a scalable system that is sufficiently sensitive and robust to test for SARS-CoV-2 directly on clinical nasopharyngeal swab samples in viral transport media in 30 min at the point of care without the need for specialized or proprietary equipment or reagents. This cost-effective and efficient one-step testing method can be readily available for COVID-19 testing world-wide, especially in resource poor settings.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1820
Author(s):  
Jeningsih ◽  
Ling Ling Tan ◽  
Alizar Ulianas ◽  
Lee Yook Heng ◽  
Nur-Fadhilah Mazlan ◽  
...  

A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP–latex spheres were attached to the thiolated reporter probe (rDNA) by Au–thiol binding to functionalize as an optical gold–latex–rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP–PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP–PSA–rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10−21 M to 1.0 × 10−12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10−29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252687
Author(s):  
Sukalyani Banik ◽  
Kaheerman Saibire ◽  
Shraddha Suryavanshi ◽  
Glenn Johns ◽  
Soumitesh Chakravorty ◽  
...  

Background Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. Methods We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. Results SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on VeroE6 cells was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. Conclusion eNAT and similar guanidinium thiocyanate-based media may be of value for transport, stabilization, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.


2014 ◽  
Vol 61 (3) ◽  
Author(s):  
Agnieszka Woźniak-Kosek ◽  
Bogumiła Kempińska-Mirosławska ◽  
Grażyna Hoser

Demographic changes and the development of transportation contribute to the rapid spread of influenza. Before an idea of a 'person to person' spread appeared, divergent theories were developed to explain influenza epidemics in the past. Intensified virological and serological tests became possible after isolation of the human influenza virus in 1933. The first influenza virus detection methods were based on its isolation in egg embryos or cell lines and on demonstration of the presence of the viral antigens. Molecular biology techniques associated with amplification of RNA improved the quality of tests as well as sensitivity of influenza virus detection in clinical samples. It became possible to detect mixed infections caused by influenza types A and B and to identify the strain of the virus. Development of reliable diagnostic methods enabled fast diagnosis of influenza which is important for choosing an appropriate medical treatment.


2021 ◽  
Author(s):  
Kerou Zhang ◽  
Luis Rodriguez ◽  
Lauren Yuxuan Cheng ◽  
David Yu Zhang

Clinically and biologically, rare DNA sequence variants are significant and informative. However, existing detection technologies are either complex in workflow, or restricted in the limit of detection (LoD), or do not allow for multiplexing. Blocker displacement amplification (BDA) method can stably and effectively detect and enrich multiple rare variants with LoD around 0.1% variant allele fraction (VAF). Nonetheless, the detailed mutation information has to be identified by additional sequencing technologies. Here, we present allele-specific BDA (As-BDA), a method combining BDA with allele-specific TaqMan (As-TaqMan) probes for effective variant enrichment and simultaneous SNV profiling. We demonstrated that As-BDA could detect mutations down to 0.01% VAF. Further, As-BDA could detect up to four mutations with low to 0.1% VAF per reaction using only 15 ng DNA input. The median error of As-BDA in VAF determination is approximately 9.1%. Comparison experiments using As-BDA and droplet digital PCR (ddPCR) on peripheral blood mononuclear cell (PBMC) clinical samples showed 100% concordance for samples with mutations at 3 0.1% VAF. Hence, we have shown that As-BDA can achieve simultaneous enrichment and identification of multiple targeted mutations within the same reaction with high clinical sensitivity and specificity, thus helpful for clinical diagnosis.


Author(s):  
Puck B. van Kasteren ◽  
Bas van der Veer ◽  
Sharon van den Brink ◽  
Lisa Wijsman ◽  
Jørgen de Jonge ◽  
...  

ABSTRACTThe final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed.The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene).We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95% limit of detection (LOD95%). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n=16) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n=6) and a panel of RNA from related human coronaviruses to evaluate assay specificity.PCR efficiency was ≥96% for all assays and the estimated LOD95% varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene.We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S139-S139
Author(s):  
J C Lownik ◽  
J S Farrar ◽  
G Way ◽  
R K Martin

Abstract Introduction/Objective Since the start of the coronavirus disease 2019 (COVID-19) pandemic, molecular diagnostic testing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has faced substantial supply chain shortages and noteworthy delays in result reporting after sample collection. Supply chain shortages have been most evident in reagents for RNA extraction and rapid diagnostic testing. In this study, we explored the kinetic limitations of extraction-free rapid cycle RT-qPCR for SARS-CoV-2 virus detection using the commercially available capillary based LightCycler. Methods/Case Report We optimized reverse transcription and PCR under extraction-free and rapid thermocycling conditions utilizing hydrolysis probe-based detection methods using a Roche LightCycler. Results (if a Case Study enter NA) This protocol improves detection speed while maintaining the sensitivity and specificity of hydrolysis probe-based detection. Percentage agreement between the developed assay and previously tested positive patient samples was 97.6% (n= 40/41) and negative patient samples was 100% (40/40). We further demonstrate that using purified RNA, SARS-CoV-2 testing using extreme RT-PCR and product verification by melting can be completed in less than 3 minutes. Conclusion We developed a protocol for sensitive and specific RT-qPCR of SARS-CoV-2 RNA from nasopharyngeal swabs in less than 20 minutes, with minimal hands-on time requirements. Overall, these studies provide a framework for increasing the speed of SARS-CoV-2 and other infectious disease testing.


Author(s):  
Sonny M Assennato ◽  
Allyson V Ritchie ◽  
Cesar Nadala ◽  
Neha Goel ◽  
Hongyi Zhang ◽  
...  

AbstractNucleic acid amplification for the detection of SARS-CoV-2 RNA in respiratory samples is the standard method for diagnosis. These tests are centralised and therefore turnaround times can be 2-5 days. Point-of-care testing with rapid turnaround times would allow more effective triage in settings where patient management and infection control decisions need to be made rapidly.Inclusivity and specificity of the SAMBA II SARS-CoV-2 assay was determined by in silico analyses of the primers and probes. Analytical and clinical sensitivity and specificity of the SAMBA II SARS-CoV-2 Test was evaluated for analytical sensitivity and specificity. Clinical performance was evaluated in residual clinical samples compared to the Public Health England reference tests.The limit of detection of the SAMBA II SARS-CoV-2 Test is 250 cp/mL and is specific for detection of 2 regions of the SARS-CoV-2 genome. The clinical sensitivity was evaluated in 172 clinical samples provided by the Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge (CMPHL), which showed a sensitivity of 98.9% (95% CI 94.03-99.97%), specificity of 100% (95% CI 95.55-100%), PPV of 100% and NPV of 98.78% (92.02-99.82%) compared to testing by CMPHLSAMBA detected 3 positive samples that were initially negative by PHE Test. The data shows that the SAMBA II SARS-CoV-2 Test performs equivalently to the centralised testing methods with a much quicker turnaround time. Point of care testing, such as SAMBA, should enable rapid patient management and effective implementation of infection control measures.


2020 ◽  
Author(s):  
Nor Afizah Nuin ◽  
Angelica Fiona Tan ◽  
Yao Long Lew ◽  
Kim A Piera ◽  
Timothy William ◽  
...  

Abstract Background : The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples. Methods : Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 P. vivax , 21 P. falciparum , and 10 P. malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated. Results : The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95%CI 89.7-100) and 100% (95%CI 93.2-100) respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95%CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax , P. falciparum , and P. malariae was comparable to P. knowlesi . The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95%CI 65.3-88.9) and specificity of 80.4% (95%CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi . Conclusion : The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.


2021 ◽  
Author(s):  
Nikhil Shri Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Zachary Petty ◽  
Jiani Chen ◽  
...  

Background: In the current phase of the COVID-19 pandemic, we are facing two serious public health challenges that include deficits in SARS-CoV-2 variant monitoring and neglection of other co-circulation respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak are required to understand the transmission of the virus amongst seemingly unrelated cases and provide critical epidemiological information. To address these challenges, we evaluated a new high-throughput next-generation sequencing (NGS) panel that includes 40 viral pathogens to analyze viral subtypes, mutational variants of SARS-CoV-2, model to understand the spread of the virus in the state of Georgia, USA, and to assess other circulating viruses in the same population. Methods This study evaluated a total of 522 samples that included 483 patient samples and 42 synthetic positive control materials. The performance metrics were calculated for both clinical and reference control samples by comparing detection results with the RT-PCR assay. The limit of detection (LoD) studies were conducted as per the FDA guidelines. Inference and visualization of the phylogeny of the SARS-CoV-2 sequences were performed through the Nextstrain Command-Line Interface (CLI) tool, utilizing the associated augur and auspice toolkits. Result The performance metric was calculated using both the clinical samples and the reference control with a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The LoD was determined to be 10 copies/ml with all 25 replicates detected across two different runs. The clade for pangolin lineage B contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF 3a and, S84L in ORF8 covarying with the D614G spike protein mutation were found to be prevalent in the early pandemic in Georgia, USA. Isolates from the same county formed paraphyletic groups in our analysis, which indicated virus transmission between counties. Conclusion The study demonstrates the clinical utility of the NGS panel to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats, models that provide insights into viral transmission patterns and predict transmission/ resurgence of regional outbreaks and provide critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.


Sign in / Sign up

Export Citation Format

Share Document