scholarly journals A Hydrogel Microneedle-assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification

2021 ◽  
Author(s):  
Hanjia Zheng ◽  
Amin GhavamiNejad ◽  
Peyman Ghavami Nejad ◽  
Melisa Samarikhalaj ◽  
Adria Giacca ◽  
...  

Analyzing interstitial fluid (ISF) via microneedle (MN) devices enables patient health monitoring in a minimally invasive manner and at point-of-care settings. However, most MN-based diagnostic approaches require complicated fabrication processes or post-processing of the extracted ISF. Here we show in-situ and on-needle measurement of target analytes by integrating hydrogel microneedles (HMN) with aptamer probes as the target recognition elements. Fluorescently tagged aptamer probes are chemically attached to the hydrogel matrix while a crosslinked patch is formed. We use the assay for specific and sensitive quantification of glucose concentrations in an animal model of diabetes to track hypoglycemia, euglycemia, and hyperglycemia conditions. The assay can track the rising and falling concentrations of glucose and the extracted measurements closely match those from the gold standard techniques. The assay enables rapid and reagentless target detection and can be readily modified to measure other target analytes in vivo. Our system has the potential to improve the quality of life of patients who are in need of close monitoring of biomarkers of health and disease.

2021 ◽  
Author(s):  
Moataz Dowaidar

As many medications are administered jointly, they often give larger benefits, counteract disadvantages, and enhance treatment results compared to monotherapy. Whether natural or synthetic, injectable biomaterials can form degradable networks in situ, decreasing patient pain and cost while presenting new and promising possibilities for minimally invasive surgery. Biomaterials' ability to create and manufacture injectable systems is strongly impacted by their physicochemical and mechanical properties. The design and manufacture of injectable systems containing cells, therapeutic molecules, particles, and biomolecules that can be injected into geometrically complex body tissue regions poses a significant challenge as they must ensure drug/biomolecule/material bioactivity, cell survival and retention. Hydrogels are a promising choice in this case given their amazing ability to manipulate, encapsulate and co-deliver pharmaceutical chemicals, cells, biomolecules, and nanomaterials. Hydrogels can alter their mechanical and deteriorating qualities by adjusting the cross-linking technique and chemical composition. The ability to modify IH's mechanical strength permits co-encapsulation of medicinal compounds, cells, nanomaterials, and growth factors in the matrix in situ, allowing for multimodal synergistic therapies.To boost the prospects of translating IHs into normal clinics, various barriers and outstanding scientific issues must be tackled in the future. Future investigations, including the application of IHs in multimodal synergistic treatment, should start with large animal models such as monkeys and dogs or even ex vivo human tissue models. In addition, the period of in vivo evaluations should be prolonged from weeks to months for trustworthy and accurate data to be translated to clinical trials. On the one hand, the toxicity of certain crosslinking agents used in IH synthesis must be considered, as the residues will cause unwanted in vivo reactions.Toxic crosslinkers, on the other hand, may interact with therapeutic molecules/biomolecules or nanomaterials trapped in the hydrogel matrix, causing loss of bioactivity. Similarly, IHs' sol–gel transition is a vital issue requiring much investigation. A quick sol–gel transition of precursor solutions might cause the fluid to be caught in the needle, whereas high-viscosity precursor solutions need high injection force, resulting in physician hand fatigue and patient annoyance. Other concerns for clinical IH translation include fast release and rate of degradation. Degradation rate is critical in controlling therapeutic drug release and tissue regeneration. Fast hydrogel breakdown may trigger early inflammatory reaction due to breakdown products, whereas delayed degradation may result in insufficient release of therapeutic drugs. Changing the composition, structure, and crystallinity of polymers must be employed to customize the breakdown rate. Expert researchers will be better equipped to tackle these challenges if they have a deeper knowledge of polymers' physiochemical features. Overall, future IH design should focus on building simple, well-defined 3D networks with low toxicity, high biodegradation rate, and acceptable functionality.


Author(s):  
Navid Kashaninejad ◽  
Ahmed Munaz ◽  
Hajar Moghadas ◽  
Sharda Yadav ◽  
Muhammad Umer ◽  
...  

Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well-suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection will be discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays will be discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 83
Author(s):  
Navid Kashaninejad ◽  
Ahmed Munaz ◽  
Hajar Moghadas ◽  
Sharda Yadav ◽  
Muhammad Umer ◽  
...  

Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2020 ◽  
Author(s):  
Wenhao Zhou ◽  
Teng Zhang ◽  
Jianglong Yan ◽  
QiYao Li ◽  
Panpan Xiong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng Zhou ◽  
Youzhou Yang ◽  
Jiaxin Wang ◽  
Qingyang Wu ◽  
Zhuozhi Gu ◽  
...  

AbstractIn vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


Sign in / Sign up

Export Citation Format

Share Document