scholarly journals Trivial Excitation Energy Transfer to Carotenoids is an Unlikely Mechanism for Non-Photochemical Quenching in LHCII

2021 ◽  
Author(s):  
Callum Gray ◽  
Tiejun Wei ◽  
Tomáš Polívka ◽  
Vangelis Daskalakis ◽  
Christopher D. P. Duffy

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favours excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD trajectories) about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely linear absorption (LA) transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII potential energy surface. We show that trivial, Coulomb-mediated energy transfer to S1 is an unlikely quenching mechanism. Pigment movements are insufficient to switch the system between quenched and unquenched states. Modulation of S1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is likely an artefact of quantum chemical over-estimation of S1 oscillator strength and the real mechanism likely involves non-trivial inter-molecular states.

2022 ◽  
Vol 12 ◽  
Author(s):  
Callum Gray ◽  
Tiejun Wei ◽  
Tomáš Polívka ◽  
Vangelis Daskalakis ◽  
Christopher D. P. Duffy

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.


2020 ◽  
Vol 10 (11) ◽  
pp. 4045
Author(s):  
Alexandra Fălămaș ◽  
Sebastian A. Porav ◽  
Valer Tosa

Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.


2010 ◽  
Vol 37 (9) ◽  
pp. 859 ◽  
Author(s):  
Raquel Esteban ◽  
Shizue Matsubara ◽  
María Soledad Jiménez ◽  
Domingo Morales ◽  
Patricia Brito ◽  
...  

Two xanthophyll cycles are present in higher plants: the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. Conversions of V to zeaxanthin (Z) in the first and Lx to lutein (L) in the second happen in parallel under illumination. Unlike the V cycle, in which full epoxidation is completed overnight, in the Lx cycle, this reaction has been described as irreversible on a daily basis in most species (the ‘truncated’ Lx cycle). However, there are some species that display complete restoration of Lx overnight (‘true’ Lx cycle). So far, little is known about the physiological meaning of these two versions of the Lx cycle. Therefore, in the present work, the ‘true’ Lx cycle operation was studied in seedlings of Ocotea foetens (Aiton) Benth. under controlled and field conditions. Complete overnight recovery of the Lx pool in the presence of norfluorazon suggested that the inter-conversions between Lx and L represent a true cycle in this species. Furthermore, Lx responded dynamically to environmental conditions during long-term acclimation. Our data demonstrate the operation of a ‘true’ Lx cycle and, for the first time, its potential involvement in the regulation of non-photochemical quenching in situ. We propose dual regulation of Lx cycle in O. foetens, in which the extent of Lx restoration depends on the intensity and duration of illumination.


2021 ◽  
Vol 22 (6) ◽  
pp. 2969
Author(s):  
Aurélie Crepin ◽  
Edel Cunill-Semanat ◽  
Eliška Kuthanová Trsková ◽  
Erica Belgio ◽  
Radek Kaňa

Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.


2005 ◽  
Vol 33 (4) ◽  
pp. 858-862 ◽  
Author(s):  
A. Dreuw ◽  
G.R. Fleming ◽  
M. Head-Gordon

NPQ (non-photochemical quenching) is a fundamental photosynthetic mechanism by which plants protect themselves against excess excitation energy and the resulting photodamage. A discussed molecular mechanism of the so-called feedback de-excitation component (qE) of NPQ involves the formation of a quenching complex. Recently, we have studied the influence of formation of a zeaxanthin–chlorophyll complex on the excited states of the pigments using high-level quantum chemical methodology. In the case of complex formation, electron-transfer quenching of chlorophyll-excited states by carotenoids is a relevant quenching mechanism. Furthermore, additionally occurring charge-transfer excited states can be exploited experimentally to prove the existence of the quenching complex during NPQ.


2019 ◽  
Vol 21 (21) ◽  
pp. 11087-11102 ◽  
Author(s):  
Afeefah U. Neelambra ◽  
Chinju Govind ◽  
Tessy T. Devassia ◽  
Guruprasad M. Somashekharappa ◽  
Venugopal Karunakaran

The occurrence of intramolecular charge transfer along with energy transfer controlled by the polarity of solvent is revealed by femtosecond and nanosecond transient absorption and emission spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document