scholarly journals Molecular basis of ocean acidification sensitivity and adaptation in Mytilus galloprovincialis

2021 ◽  
Author(s):  
Lydia Kapsenberg ◽  
Mark Christopher Bitter ◽  
Angelica Miglioli ◽  
Carles Pelejero ◽  
Jean-Pierre Gattuso ◽  
...  

One challenge in global change biology is to identify the mechanisms underpinning physiological sensitivities to environmental change and to predict their potential to adapt to future conditions. Using ocean acidification as the representative stressor, molecular pathways associated with abnormal larval development of a globally distributed marine mussel are identified. The targeted developmental stage was the trochophore stage, which is, for a few hours, pH sensitive and is the main driver of developmental success. RNA sequencing and in situ RNA hybridization were used to identify processes associated with abnormal development, and DNA sequencing was used to identify which processes evolve when larvae are exposed to low pH for the full duration of their larval stage. Trochophores exposed to low pH exhibited 43 differentially expressed genes. Thirteen genes, none of which have previously been identified in mussel trochophores, including three unknown genes, were expressed in the shell field. Gene annotation and in situ hybridization point to two core processes associated with the response to low pH: development of the trochophore shell field and the cellular stress response. Encompassing both of these processes, five genes demonstrated changes in allele frequency that are indicative of rapid adaptation. Thus, genes underpinning the most pH-sensitive developmental processes also exhibit scope to adapt via genetic variation currently maintained in the mussel population. These results provide evidence that protecting existing genetic diversity is a critical management action to maximize the potential for rapid adaptation under a changing environment.

2015 ◽  
Vol 73 (3) ◽  
pp. 951-961 ◽  
Author(s):  
Kit Yu Karen Chan ◽  
Daniel Grünbaum ◽  
Maj Arnberg ◽  
Sam Dupont

Abstract Ocean acidification (OA) is widely recognized as an increasing threat to marine ecosystems. Many marine invertebrates have dual-phase life cycles in which planktonic larvae connect and sustain otherwise disconnected benthic adult populations. Many planktonic larvae are particularly sensitive to environmental stresses including OA. Here, we compared the developmental dynamics, survivorship, and swimming behaviours of plutei of two ecologically important echinoderm species that naturally experience variability in ambient pH: the purple urchin Strongylocentrotus purpuratus and the infaunal brittlestar Amphiura filiformis. Sensitivity to decreased pH differed between these two species and between maternal lineages. Larvae of both species experienced increased mortality and reduced growth rate under low pH conditions. However, larval brittlestars appeared more sensitive and experienced over 80% mortality after 7-d exposure to pH 7.7. Larval urchins from one maternal lineage underwent highly synchronized budding (release of blastula-like particles) at low pH. Observed budding temporarily increased numerical density and reduced individual size, leading to differences in growth and mortality rates between the two half-sibling groups and another population. Swimming speeds of larval brittlestars were reduced in decreased pH. In contrast, acidification had either no effect or positive effect on swimming speeds of larval urchins. The observed differences between species may be a reflection of pre-exposure in their natural habitats: larval brittlestars experience a relatively stable in situ pH environment, whereas larval urchins are occasionally exposed to low pH in upwelling regions. Urchins may therefore exhibit short-term compensatory responses such as budding and increased swimming speed. Natural selection could act upon the significant variations we observed between maternal lineages, resulting in more resilient populations confronting chronic exposure to OA.


2016 ◽  
Vol 283 (1843) ◽  
pp. 20161506 ◽  
Author(s):  
Miles D. Lamare ◽  
Michelle Liddy ◽  
Sven Uthicke

Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated p CO 2 and ambient p CO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89–7.92), larvae developing in elevated p CO 2 vent conditions (pH (T) = 7.50–7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa ) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll- a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katherine E. Keil ◽  
Terrie Klinger ◽  
Julie E. Keister ◽  
Anna K. McLaskey

Zooplankton can serve as indicators of ecosystem health, water quality, food web structure, and environmental change, including those associated with climate change and ocean acidification (OA). Laboratory studies demonstrate that low pH and high pCO2 associated with OA can significantly affect the physiology and survival of zooplankton, with differential responses among taxa. While laboratory studies can be indicative of zooplankton response to OA, in situ responses will ultimately determine the fate of populations and ecosystems. In this perspective, we compare expectations from experimental studies with observations made in Puget Sound (Washington, United States), a highly dynamic estuary with known vulnerabilities to low pH and high pCO2. We found little association between empirical measures of in situ pH and the abundance of sensitive taxa as revealed by meta-analysis, calling into question the coherence between experimental studies and field observations. The apparent mismatch between laboratory and field studies has important ramifications for the design of long-term monitoring programs and interpretation and use of the data produced. Important work remains to be done to connect traits that are sensitive to OA with those that are ecologically relevant and reliably observable in the field.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Alexia D. Saint-Macary ◽  
Neill Barr ◽  
Evelyn Armstrong ◽  
Karl Safi ◽  
Andrew Marriner ◽  
...  

The cycling of the trace gas dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) may be affected by future ocean acidification and warming. DMSP and DMS concentrations were monitored over 20-days in four mesocosm experiments in which the temperature and pH of coastal water were manipulated to projected values for the year 2100 and 2150. This had no effect on DMSP in the two-initial nutrient-depleted experiments; however, in the two nutrient-amended experiments, warmer temperature combined with lower pH had a more significant effect on DMSP & DMS concentrations than lower pH alone. Overall, this indicates that future warming may have greater influence on DMS production than ocean acidification. The observed reduction in DMSP at warmer temperatures was associated with changes in phytoplankton community and in particular with small flagellate biomass. A small decrease in DMS concentration was measured in the treatments relative to other studies, from −2% in the nutrient-amended low pH treatment to −16% in the year 2150 pH and temperature conditions. Temporal variation was also observed with DMS concentration increasing earlier in the higher temperature treatment. Nutrient availability and community composition should be considered in models of future DMS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Steve S. Doo ◽  
Peter J. Edmunds ◽  
Robert C. Carpenter

2002 ◽  
Vol 726 ◽  
Author(s):  
Yongsoon Shin ◽  
Jun Liu ◽  
Li-Qiong Wang ◽  
Jeong Ho Chang ◽  
William D. Samuels ◽  
...  

AbstractWe here report the synthesis of ordered ceramic materials with hierarchy produced by an in-situ mineralization of ordered wood cellular structures with surfactant-templated sol-gel at different pH. At low pH, a silicic acid is coated onto inner surface of wood cellular structure and it penetrates into pores left, where degraded lignin and hemicellulose are leached out, to form a positive replica, while at high pH the precipitating silica particles due to fast condensation clog the cells and pit structures to form a negative replica of wood. The calcined monoliths produced in different pHs contain ordered wood cellular structures, multi-layered cell walls, pits, vessels well-preserved with positive or negative contrasts, respectively. The surfactant-templated mineralization produces ordered hexagonal nanopores with 20Å in the cell walls after calcination.


2014 ◽  
Vol 281 (1775) ◽  
pp. 20132479 ◽  
Author(s):  
K. E. Fabricius ◽  
G. De'ath ◽  
S. Noonan ◽  
S. Uthicke

The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO 2 ) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO 2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO 2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO 2 (425–1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO 2 tolerances derived from laboratory experiments. High CO 2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs.


2017 ◽  
Vol 177 ◽  
pp. 324-333 ◽  
Author(s):  
Seyed Mohammad Hossein Dabiri ◽  
Alberto Lagazzo ◽  
Fabrizio Barberis ◽  
Amirreza Shayganpour ◽  
Elisabetta Finocchio ◽  
...  

2007 ◽  
Vol 49 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Marinês Nobre-dos-Santos ◽  
Lidiany K. A. Rodrigues ◽  
Altair A. Del-Bel-Cury ◽  
Jaime A. Cury

2019 ◽  
Author(s):  
Emma Timmins-Schiffman ◽  
José M. Guzmán ◽  
Rhonda Elliott ◽  
Brent Vadopalas ◽  
Steven B. Roberts

AbstractPacific geoduck clams (Panopea generosa) are found along the Northeast Pacific coast where they are significant components of coastal and estuarine ecosystems and the basis of a growing and highly profitable aquaculture industry. The Pacific coastline, however, is also the sight of rapidly changing ocean habitat, including significant reductions in pH. The impacts of ocean acidification on invertebrate bivalve larvae have been widely documented and it is well established that many species experience growth and developmental deficiencies when exposed to low pH. As a native of environments that have historically lower pH than the open ocean, it is possible that geoduck larvae are less impacted by these effects than other species. Over two weeks in larval development (days 6-19 post-fertilization) geoduck larvae were reared at pH 7.5 or 7.1 in a commercial shellfish hatchery. Larvae were sampled at six time points throughout the period for a in-depth proteomics analysis of developmental molecular physiology. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development. Competency for settlement was also delayed in larvae from the low pH conditions. A comparison of proteomic profiles over the course of development reveal that these differing phenotypic outcomes are likely due to environmental disruptions to the timing of molecular physiological events as suites of proteins showed differing profiles of abundance between the two pH environments. Ocean acidification likely caused an energetic stress on the larvae at pH 7.1, causing a shift in physiological prioritization with resulting loss of fitness.


Sign in / Sign up

Export Citation Format

Share Document