scholarly journals mRNA Vaccines Induce Rapid Antibody Responses in Mice

2021 ◽  
Author(s):  
Makda Gebre ◽  
Susanne Rauch ◽  
Nicole Roth ◽  
Janina Gergen ◽  
Jingyou Yu ◽  
...  

mRNA vaccines can be developed and produced quickly, making them attractive for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. We sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first examined immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA, but not DNA, immunization. The mRNA vaccine also induced increased levels of IL-5, IL-6 and MCP-1. We then evaluated immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines with the same HIV-1 envelope antigen in mice. Induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Eliciting rapid humoral immunity may be an advantageous property of mRNA vaccines for controlling infectious disease outbreaks.

Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 260
Author(s):  
Stefania Dispinseri ◽  
Mariangela Cavarelli ◽  
Monica Tolazzi ◽  
Anna Maria Plebani ◽  
Marianne Jansson ◽  
...  

The antibodies with different effector functions evoked by Human Immunodeficiency Virus type 1 (HIV-1) transmitted from mother to child, and their role in the pathogenesis of infected children remain unresolved. So, too, the kinetics and breadth of these responses remain to be clearly defined, compared to those developing in adults. Here, we studied the kinetics of the autologous and heterologous neutralizing antibody (Nab) responses, in addition to antibody-dependent cellular cytotoxicity (ADCC), in HIV-1 infected children with different disease progression rates followed from close after birth and five years on. Autologous and heterologous neutralization were determined by Peripheral blood mononuclear cells (PBMC)- and TZMbl-based assays, and ADCC was assessed with the GranToxiLux assay. The reactivity to an immunodominant HIV-1 gp41 epitope, and childhood vaccine antigens, was assessed by ELISA. Newborns displayed antibodies directed towards the HIV-1 gp41 epitope. However, antibodies neutralizing the transmitted virus were undetectable. Nabs directed against the transmitted virus developed usually within 12 months of age in children with slow progression, but rarely in rapid progressors. Thereafter, autologous Nabs persisted throughout the follow-up of the slow progressors and induced a continuous emergence of escape variants. Heterologous cross-Nabs were detected within two years, but their subsequent increase in potency and breadth was mainly a trait of slow progressors. Analogously, titers of antibodies mediating ADCC to gp120 BaL pulsed target cells increased in slow progressors during follow-up. The kinetics of antibody responses to the immunodominant viral antigen and the vaccine antigens were sustained and independent of disease progression. Persistent autologous Nabs triggering viral escape and an increase in the breadth and potency of cross-Nabs are exclusive to HIV-1 infected slowly progressing children.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1942
Author(s):  
Evangelos Terpos ◽  
Ioannis P. Trougakos ◽  
Vangelis Karalis ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Sentiljana Gumeni ◽  
...  

The aim of this study was to investigate the kinetics of neutralizing antibodies (NAbs) and anti-SARS-CoV-2 anti-S-RBD IgGs up to three months after the second vaccination dose with the BNT162b2 mRNA vaccine. NAbs and anti-S-RBD levels were measured on days 1 (before the first vaccine shot), 8, 22 (before the second shot), 36, 50, and three months after the second vaccination (D111) (NCT04743388). 283 health workers were included in this study. NAbs showed a rapid increase from D8 to D36 at a constant rate of about 3% per day and reached a median (SD) of 97.2% (4.7) at D36. From D36 to D50, a slight decrease in NAbs values was detected and it became more prominent between D50 and D111 when the rate of decline was determined at −0.11 per day. The median (SD) NAbs value at D111 was 92.7% (11.8). A similar pattern was also observed for anti-S-RBD antibodies. Anti-S-RBDs showed a steeper increase during D22–D36 and a lower decline rate during D36–D111. Prior COVID-19 infection and younger age were associated with superior antibody responses over time. In conclusion, we found a persistent but declining anti-SARS-CoV-2 humoral immunity at 3 months following full vaccination with BNT162b2 in healthy individuals.


2018 ◽  
Author(s):  
Omolara Baiyegunhi ◽  
Bongiwe Ndlovu ◽  
Funsho Ogunshola ◽  
Nasreen Ismail ◽  
Bruce D. Walker ◽  
...  

AbstractDespite decades of focused research, the field has yet to develop a prophylactic vaccine. In the RV144 vaccine trial, non-neutralizing antibody responses were identified as a correlate for prevention of HIV acquisition. However, factors that predict the development of such antibodies are not fully elucidated. We sought to define the contribution of circulating T follicular helper (cTfh) cell subsets to the development of non-neutralizing antibodies in HIV-1 clade C infection. Study participants were recruited from an acute HIV-1 clade C infection cohort. Plasma anti-gp41, -gp120, -p24 and -p17 antibodies were screened using a customized multivariate Luminex assay. Phenotypic and functional characterization of cTfh were performed using HLA class II tetramers and intracellular cytokine staining. In this study, we found that acute HIV-1 clade C infection skewed differentiation of functional cTfh subsets towards increased Tfh1 (p=0.02) and Tfh2 (p<0.0001) subsets, with a concomitant decrease in overall Tfh1-17 (that shares both Tfh1 and Tfh17 properties) (p=0.01) and Tfh17 subsets (p<0.0001) compared to HIV negative subjects. Interestingly, the frequencies of Tfh1 during acute infection (5.0-8.0 weeks post-infection) correlated negatively with set point viral load (p=0.03, r=-60) and were predictive of p24-specific plasma IgG titers at one year of infection (p=0.003, r=0.85). Taken together, our results suggest that circulating the Tfh1 subset plays an important role in the development of anti-HIV antibody responses and contributes to HIV suppression during acute HIV-1 infection. These results have implications for vaccine studies aimed at inducing long lasting anti-HIV antibody responses.ImportanceThe HIV epidemic in southern Africa accounts for almost half of the global HIV burden with HIV-1 clade C being the predominant strain. It is therefore important to define immune correlates of clade C HIV control that might have implications for vaccine design in this region. T follicular helper (Tfh) cells are critical for the development of HIV-specific antibody responses and could play a role in viral control. Here we showed that the early induction of circulating Tfh1 cells during acute infection correlated positively with the magnitude of p24-specific IgG and was associated with lower set point viral load. This study highlights a key Tfh cell subset that could limit HIV replication by enhancing antibody generation. This study underscores the importance of circulating Tfh cells in promoting non-neutralizing antibodies during HIV-1 infection.


2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2760-2769 ◽  
Author(s):  
Claudio Casoli ◽  
Elisa Vicenzi ◽  
Andrea Cimarelli ◽  
Giacomo Magnani ◽  
Paolo Ciancianaini ◽  
...  

The influence of human T-cell leukemia/lymphoma virus type II (HTLV-II) in individuals also infected with HIV-1 is poorly understood. To evaluate the reciprocal influence of HTLV-II and HIV-1 infection, primary peripheral blood mononuclear cell (PBMC) cultures from coinfected individuals were established in the presence of interleukin 2 (IL-2). In these cultures, the kinetics of HTLV-II replication always preceded those of HIV-1. Noteworthy, the kinetics of HIV-1 production were inversely correlated to the HTLV-II proviral load in vivo and its replication ex vivo. These observations suggested a potential interaction between the 2 retroviruses. In this regard, the levels of IL-2, IL-6, and tumor necrosis factor- (TNF-) were measured in the same coinfected PBMC cultures. Endogenous IL-2 was not produced, whereas IL-6 and TNF- were secreted at levels compatible with their known ability to up-regulate HIV-1 expression. The HIV-suppressive CC-chemokines RANTES, macrophage inflammatory protein-1 (MIP-1), and MIP-1β were also determined in IL-2–stimulated PBMC cultures. Of interest, their kinetics and concentrations were inversely related to those of HIV-1 replication. Experiments were performed in which CD8+ T cells or PBMCs from HTLV-II monoinfected individuals were cocultivated with CD4+ T cells from HIV-1 monoinfected individuals separated by a semipermeable membrane in the presence or absence of antichemokine neutralizing antibodies. The results indicate that HTLV-II can interfere with the replicative potential of HIV-1 by up-regulating viral suppressive CC-chemokines and, in particular, MIP-1. This study is the first report indicating that HTLV-II can influence HIV replication, at least in vitro, via up-regulation of HIV-suppressive chemokines.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria Blasi ◽  
Donatella Negri ◽  
Kevin O. Saunders ◽  
Erich J. Baker ◽  
Hannah Stadtler ◽  
...  

AbstractA preventative HIV-1 vaccine is an essential intervention needed to halt the HIV-1 pandemic. Neutralizing antibodies protect against HIV-1 infection in animal models, and thus an approach toward a protective HIV-1 vaccine is to induce broadly cross-reactive neutralizing antibodies (bnAbs). One strategy to achieve this goal is to define envelope (Env) evolution that drives bnAb development in infection and to recreate those events by vaccination. In this study, we report the immunogenicity, safety, and efficacy in rhesus macaques of an SIV-based integrase defective lentiviral vector (IDLV) expressing sequential gp140 Env immunogens derived from the CH505 HIV-1-infected individual who made the CH103 and CH235 bnAb lineages. Immunization with IDLV expressing sequential CH505 Envs induced higher magnitude and more durable binding and neutralizing antibody responses compared to protein or DNA +/− protein immunizations using the same sequential envelopes. Compared to monkeys immunized with a vector expressing Envs alone, those immunized with the combination of IDLV expressing Env and CH505 Env protein demonstrated improved durability of antibody responses at six months after the last immunization as well as lower peak viremia and better virus control following autologous SHIV-CH505 challenge. There was no evidence of vector mobilization or recombination in the immunized and challenged monkeys. Although the tested vaccines failed to induce bnAbs and to mediate significant protection following SHIV-challenge, our results show that IDLV proved safe and successful at inducing higher titer and more durable immune responses compared to other vaccine platforms.


2007 ◽  
Vol 81 (17) ◽  
pp. 9268-9278 ◽  
Author(s):  
Erin E. Verity ◽  
Dimitra Zotos ◽  
Kim Wilson ◽  
Catherine Chatfield ◽  
Victoria A. Lawson ◽  
...  

ABSTRACT The Sydney Blood Bank Cohort (SBBC) consists of eight blood transfusion recipients infected with nef-attenuated human immunodeficiency virus type 1 (HIV-1) acquired from a single donor. Here, we show that viral phenotypes and antibody responses differ considerably between individual cohort members, despite the single source of infection. Replication of isolated virus varied from barely detectable to similar to that of the wild-type virus, and virus isolated from five SBBC members showed coreceptor usage signatures unique to each individual. Higher viral loads and stronger neutralizing antibody responses were associated with better-replicating viral strains, and detectable viral replication was essential for the development of strong and sustained humoral immune responses. Despite the presence of strong neutralizing antibodies in a number of SBBC members, disease progression was not prevented, and each cohort member studied displayed a unique outcome of infection with nef-attenuated HIV-1.


2010 ◽  
Vol 84 (14) ◽  
pp. 7114-7123 ◽  
Author(s):  
Pengcheng Wang ◽  
Xinzhen Yang

ABSTRACT Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC50) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.


2015 ◽  
Vol 370 (1675) ◽  
pp. 20140290 ◽  
Author(s):  
Paul S. Wikramaratna ◽  
José Lourenço ◽  
Paul Klenerman ◽  
Oliver G. Pybus ◽  
Sunetra Gupta

Despite substantial advances in our knowledge of immune responses against HIV-1 and of its evolution within the host, it remains unclear why control of the virus eventually breaks down. Here, we present a new theoretical framework for the infection dynamics of HIV-1 that combines antibody and CD8 + T-cell responses, notably taking into account their different lifespans. Several apparent paradoxes in HIV pathogenesis and genetics of host susceptibility can be reconciled within this framework by assigning a crucial role to antibody responses in the control of viraemia. We argue that, although escape from or progressive loss of quality of CD8 + T-cell responses can accelerate disease progression, the underlying cause of the breakdown of virus control is the loss of antibody induction due to depletion of CD4 + T cells. Furthermore, strong antibody responses can prevent CD8 + T-cell escape from occurring for an extended period, even in the presence of highly efficacious CD8 + T-cell responses.


Sign in / Sign up

Export Citation Format

Share Document